
Relational DBMS Internals
Antonio Albano, Giorgio Ghelli

University of Pisa
Department of Computer Science

tonio.albano@gmail.com giorgio.ghelli@gmail.com

Collaborators

Dario Colazzo
University Paris-Dauphine

LAMSADE

Renzo Orsini
University of Venezia

Department of Environmental Sciences,
Informatics and Statistics

Copyright c© 2015 by A. Albano, G. Ghelli

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that the
first page of each copy bears this notice and the full citation including
title and authors. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission from the copyright
owner.

February 13, 2015
Revision, February 12, 2021





Contents

Preface VII

1 DBMS Functionalities and Architecture 1
1.1 Overview of a DBMS . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 A DBMS Architecture . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 The JRS System . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Permanent Memory and Buffer Management 7
2.1 Permanent Memory . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Permanent Memory Manager . . . . . . . . . . . . . . . . . . . . 9
2.3 Buffer Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Heap and Sequential Organizations 15
3.1 Storing Collections of Records . . . . . . . . . . . . . . . . . . . 15
3.2 Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Heap Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Sequential Organization . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Comparison of Costs . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 External Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Hashing Organizations 27
4.1 Table Organizations Based on a Key . . . . . . . . . . . . . . . . 27
4.2 Static Hashing Organization . . . . . . . . . . . . . . . . . . . . . 28
4.3 Dynamic Hashing Organizations . . . . . . . . . . . . . . . . . . 30
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Dynamic Tree-Structure Organizations 39
5.1 Storing Trees in the Permanent Memory . . . . . . . . . . . . . . 39
5.2 B–trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . 43
5.4 B+–trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5 Index Organization . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Non-Key Attribute Organizations 53
6.1 Non-Key Attribute Search . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Inverted Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3 Bitmap indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.4 Multi-attribute Index . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

III



IV CONTENTS c© 2015 by Albano et al.

7 Multidimensional Data Organizations 63
7.1 Types of Data and Queries . . . . . . . . . . . . . . . . . . . . . . 63
7.2 G–trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.3 B∗–trees * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8 Access Methods Management 77
8.1 The Storage Engine . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.2 Operators on Databases . . . . . . . . . . . . . . . . . . . . . . . 78
8.3 Operators on Heap Files . . . . . . . . . . . . . . . . . . . . . . . 78
8.4 Operators on Indexes . . . . . . . . . . . . . . . . . . . . . . . . 79
8.5 Access Method Operators . . . . . . . . . . . . . . . . . . . . . . 79
8.6 Examples of Query Execution Plans . . . . . . . . . . . . . . . . 80
8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

9 Transaction and Recovery Management 83
9.1 Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.2 Types of Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.3 Database System Model . . . . . . . . . . . . . . . . . . . . . . . 88
9.4 Data Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.5 Recovery Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 92
9.6 Recovery Manager Operations . . . . . . . . . . . . . . . . . . . 96
9.7 Recovery from System and Media Failures . . . . . . . . . . . . . 98
9.8 The ARIES Algorithm * . . . . . . . . . . . . . . . . . . . . . . . 100
9.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

10 Concurrency Management 105
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.2 Histories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.3 Serializable History . . . . . . . . . . . . . . . . . . . . . . . . . 108
10.4 Serializability with Locking . . . . . . . . . . . . . . . . . . . . . 113
10.5 Serializability without Locking . . . . . . . . . . . . . . . . . . . 117
10.6 Multiple-Granularity Locking * . . . . . . . . . . . . . . . . . . . 118
10.7 Locking for Dynamic Databases * . . . . . . . . . . . . . . . . . . 119
10.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

11 Implementation of Relational Operators 125
11.1 Assumptions and Notation . . . . . . . . . . . . . . . . . . . . . . 125
11.2 Selectivity Factor of Conditions . . . . . . . . . . . . . . . . . . . 129
11.3 Physical Operators for Relation (R) . . . . . . . . . . . . . . . . . 134
11.4 Physical Operator for Projection (πb) . . . . . . . . . . . . . . . . 135
11.5 Physical Operators for Duplicate Elimination (δ) . . . . . . . . . . 135
11.6 Physical Operators for Sort (τ) . . . . . . . . . . . . . . . . . . . 137
11.7 Physical Operators for Selection (σ) . . . . . . . . . . . . . . . . 137
11.8 Physical Operators for Grouping (γ) . . . . . . . . . . . . . . . . 141
11.9 Physical Operators for Join (./) . . . . . . . . . . . . . . . . . . . 142
11.10 Physical Operators for Set and Multiset Union, Intersection and Dif-

ference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
11.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

12 Query Optimization 155
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
12.2 Query Analysis Phase . . . . . . . . . . . . . . . . . . . . . . . . 156



c© 2015 by Albano et al.CONTENTS V

12.3 Query Transformation Phase . . . . . . . . . . . . . . . . . . . . 156
12.4 Physical Plan Generation Phase . . . . . . . . . . . . . . . . . . . 171

12.4.2 Single-Relation Queries . . . . . . . . . . . . . . . . . . 174
12.4.3 Multiple-Relation Queries . . . . . . . . . . . . . . . . . 175
12.4.4 Other Types of Queries . . . . . . . . . . . . . . . . . . 180

12.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

13 Physical Database Design and Tuning 195
13.1 Physical Database Design . . . . . . . . . . . . . . . . . . . . . . 195
13.2 Database Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
13.3 DBMS Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
13.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

A Formulary 217

Bibliography 223

Subject Index 227



VI CONTENTS c© 2015 by Albano et al.



PREFACE

The preface to the previous edition of this book in Italian of 2001 starts with “Af-
ter ten years of the publication of the book Databases: structures and algorithms,
the evolution of the technology of databases and the new organization of university
teaching suggest a substantial revision of the material.”

Today, another reason that suggested to review the material, and to write it in En-
glish, has been the internationalisation of the master’s degree programs offered by
the Department of Computer Science, University of Pisa, which have the participa-
tion of students with different backgrounds who have had an introductory course in
databases in different universities.

Consequently, the goal in writing this new shorter edition of the textbook is to
focus on the basic concepts of classical centralized DBMS implementation. Database
systems occupy a central position in our information-based society, and computer
scientist and database application designers should have a good knowledge about
both the theoretical and the engineering concepts that underline these systems to
ensure the desired application performance.

The book starts with an analysis of relational DBMS architecture and then presents
the main structures and algorithms to implement the modules for the management of
permanent memory, the buffer, the storage structures, the access methods, the trans-
actions and recovery, the concurrency, the cost-based query optimization. Finally, an
overview of physical database design and tuning is presented.

An original aspect of the material is that, to illustrate many of the issues in query
optimization, and to allow the students to practise with query optimization problems,
the solutions adopted for the relational system JRS (Java Relational System) will be
used, the result of a project developed in Java at the Department of Computer Science,
University of Pisa, by A. Albano with the collaboration of several students, with their
degree thesis, and of R. Orsini.

Organization

The material of the previous edition has been reduced and updated in almost all the
chapters, to make the book more suitable for use by the students of an advanced
database course, who have only had an introductory undergraduate course in databases.
Moreover, it has been decided to make this edition available for free on the web.

Chapter 1 presents the architecture of a relational DBMS and the characteristics
of the modules that compose it. Chapter 2 presents the characteristics of the perma-
nent memory and buffer managers. Chapter 3 shows how to store data in permanent
memory using files and presents the simplest data organizations, the heap and se-
quential. It also shows an approach to performance evaluation of data organizations.
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Chapter 4 describes the data primary organizations, static or dynamic, based on
hashing techniques. Chapter 5 continues the description of primary dynamic organi-
zations using tree structures, and the key secondary organizations with clustered and
unclustered indexes. Chapter 6 describes the non-key secondary organizations with
indexes to support search queries to retrieve small subsets of records, while Chap-
ter 7 presents the basic idea on multi-dimensional data organizations. Chapter 8
describes the access methods of the JRS Storage Engine to implement the physical
operators used by the query manager. Chapters 9 and 10 describe transaction recov-
ery and concurrency control management techniques. Chapters 11 and 12 describe
the JRS physical operators to implement relational algebra operators, and then how
they are used by the query optimizer to generate a physical query plan to execute a
SQL query. Finally, Chapter 13 describes solutions for the physical database design
and tuning problem.

Sections marked as advanced, using the symbol “*”, may be omitted if so desired,
without a loss of continuity.

Acknowledgments

We would like to thank the following students, who provided useful feedback on draft
versions of the book: P. Barra. G. Galanti, G. Lo Conte, G. Miraglia, L. Morlino and
A. Vannini.

A. A.
G. G.
D. C.
R. O.



Chapter 1

DBMS FUNCTIONALITIES AND
ARCHITECTURE

This chapter is an introduction to the structure of a typical centralized DBMS (Data
Base Management System) based on the relational data model. A brief description is
given of the basic functionalities of the main DBMS modules, and of the problems
to be addressed in their implementation, which will be discussed in the following
chapters.

1.1 Overview of a DBMS

The most common use of information technology is to store and retrieve information
represented as data with a predefined structure and fields with different formats, such
as numbers, characters, text, images, graphics, video and audio. The technology used
is mainly that of the databases, now available on any type of computers.

A database (DB) is a collection of homogeneous sets of data, with relationships
defined among them, stored in a permanent memory and used by means of a DBMS,
a piece of software that provides the following key features:

1. A language for the database schema definition, a collection of definitions which
describe the data structure, the restrictions on allowable values of the data (in-
tegrity constraints), and the relationships among data sets. The data structure and
relationships are described in the schema using suitable abstraction mechanisms
that depend on data model adopted by the DBMS.

2. The data structures for the storage and efficient retrieval of large amounts of data
in permanent memory.

3. A language to allow authorized users to store and manipulate data, interactively
or by means of programs, respecting the constraints defined in the schema, or to
rapidly retrieve interesting subsets of the data from a specification of their features.

4. A transactions mechanism to protect data from hardware and software malfunc-
tions and unwanted interference during concurrent access by multiple users.

Databases and DBMSs can be studied from different points of view depending on the
needs of people who must use them. Leaving aside the application’s end-users, who
are not required to know nor understand the underlying DBMS, the other users can
be classified into the following categories:
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– Non-programmer users: they are interested in how to use a DBMS interactively
to store, modify and retrieve data organized in a DB.

– DB Designers: they are interested in how to design a DB and the applications that
use them.

– DB Application developers: they are interested in how to use a DBMS from pro-
grams to develop applications that allow non-specialist users to perform predefined
tasks.

– DB Administrators: they are interested in how to install, run and tune a DB to
ensure desired performance for applications that use the data.

– DBMS Developers: they are interested in how to design and build the DBMS prod-
uct using the fundamental structures and algorithms suitable for realizing its capa-
bilities.

In this book the focus is on how to implement a DBMS, assuming that the reader
already has a working knowledge of databases at least according to the first two
points of view, to the level of depth presented, for example, in [Albano et al., 2005]
or in other texts of a similar nature cited in the bibliography. As a point of reference
we consider the relational DBMS, studied since the seventies and for which solutions
have been proposed that have become the classic reference point for all other types
of database systems.

The knowledge of the structures and algorithms discussed in the following is useful
not only for those who will implement modules with features typical of those pro-
vided by a DBMS, but also for application designers or database administrators. For
example, the knowledge of the principles of query optimization is important both to
improve the performance of applications by formulating SQL queries with a better
chance of being efficiently executed, and to improve database logical and physical
design.

In the following we will present an architecture for relational DBMSs and a brief
description of the functionality of various modules, the implementation of which will
be the subject of later chapters.

1.2 A DBMS Architecture

A simplified model of the architecture of a centralized relational DBMS provides the
following basic components (Figure 1.1):

– The Storage Engine, which includes modules to support the following facilities:

– The Permanent Memory Manager, which manages the page allocation and
de-allocation on disk storage.

– The Buffer Manager, which manages the transfer of data pages between the
permanent memory and the main memory.

– The Storage Structures Manager, which manages the data structures to store
and retrieve data efficiently.

– The Access Methods Manager, which provides the storage engine operators
to create and destroy databases, files, indexes, and the data access methods for
table scan, and index scan.

– The Transaction and Recovery Manager, which ensures that the database’s
consistency is maintained despite transaction and system failures.

– The Concurrency Manager, which ensures that there is no conflict between
concurrent access to the database.
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Figure 1.1: Architecture of a DBMS

– The Relational Engine, which includes modules to support the following facilities:

– The Data Definition Language (DDL) manager, which processes a user’s
database schema definition.

– The Query Manager, which processes a user’s query by transforming it into
an equivalent but more efficient form, thus finding a good strategy for its exe-
cution.

– The Catalog Manager, which manages special data, called metadata, about
the schemas of the existing databases (views, storage structures and indexes),
and security and authorization information that describes each user’s privileges
to access specific database, relations and views, and the owner of each of them.
The catalog is stored as a database which allows the other DBMS modules to
access and manipulate its content.

In real systems the functionalities of these modules are not as clearly separated as the
figure shows, but this diagram helps in understanding the purposes of each of them.

Let us briefly examine the modules that will be considered in the following chap-
ters, by describing the level of abstraction provided and the features that are made
available to other modules.

The Permanent Memory Manager provides a vision of the memory as a set of
databases each consisting of a set of files of physical pages of fixed size. It allows
other levels to use the permanent memory, abstracting from the different ways used
by operating systems to manage files. This module is discussed in Chapter 2.

The performance of a database query depends on the number of pages transferred
from the disk in temporary memory. The execution cost of some queries can be re-
duced using a buffer capable of containing many pages, so that, while executing the
queries, if there are repeated accesses to the same page, the likelihood that the desired
page is already in memory increases. The Buffer Manager is the module that takes
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care of properly managing this limited resource, and the transfer of pages between
temporary and permanent memories, thus offering to the other levels a vision of per-
manent memory as a set of usable pages in the main memory, abstracting from when
they are transferred from the permanent memory to the temporary buffer memory,
and vice versa. Buffer management is discussed in Chapter 2.

The Storage Structures Manager provides the other system levels with a view
of the permanent data organized into collections of records and indexes, abstracting
from the structures used to store them in the permanent memory (heap, index se-
quential, hash static or dynamic, tree indexes, etc.). Permanent data organization and
indexes are considered in Chapters 3 through 7.

The Access Methods Manager provides a vision of permanent data organized in
collections of records accessible one after the other in the order in which are stored,
or through indexes, abstracting from their physical organization. The interface of this
level is the one that is used to translate the SQL commands into low-level instructions
(access plans). This module is discussed in Chapter 8.

The Transaction and Recovery Manager provides the other system levels with
a vision of the permanent memory as a set of pages in temporary memory without
regard to failures (interruption of the execution of transactions, interruption of oper-
ation of the system, devices failures) and thus ensuring that the data always reflects
the permanent effects of all the transactions completed normally. This module is dis-
cussed in Chapter 9.

The Concurrency Manager provides the other system levels with a vision of per-
manent memory as a set pages in memory without regard to concurrent access, thus
ensuring that the concurrent execution of several transactions takes place as if they
were executed one after the other, in some order, by avoiding undesired interference.
This module is discussed in Chapter 10. The set of modules including transaction and
recovery manager, the concurrency manager, the buffer manager, and the permanent
memory manager is also called Storage engine.

The Query Manager provides a vision of permanent data as a set of relational
tables on which a user operates with SQL commands. The tasks of the SQL man-
ager commands are: ensure that only authorized users will use the data, manage the
metadata catalog, and translate queries into optimized access plans. The basic ideas
of query processing and query optimization are discussed in detail in Chapters 11
and 12.

Once the main features of the relational DBMS modules have been presented, Chap-
ter 13 discusses various aspects of database tuning, including the choice of indexes
and methods for tuning the schema, to achieve the desired performance of the appli-
cations that use the data.

Finally, there are other interesting DBMS features that are beyond the scope of this
book: (a) distribution and parallelism, (b) the extension of the relational data model
with object orientation.

1.3 The JRS System

The implementation of the relational DBMS modules will be discussed first in general
and then with respect to the solutions adopted for the system JRS (Java Relational
System), developed in Java at the Department of Computer Science, University of
Pisa, by A. Albano with the degree thesis of several students1 and the collaboration

1. Lorenzo Brandimarte, Leonardo Candela, Giovanna Colucci, Patrizia Dedato, Stefano Fantechi,
Stefano Dinelli, Martina Filippeschi, Simone Marchi, Cinzia Partigliani, Marco Sbaffi and Ciro
Valisena.
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of R. Orsini.
A unique feature of the system is that it has been designed to support both the

teacher and student to experiment not only with the SQL language to query a database
but also (1) to analyze the logical and physical query plans generated by different
cost-based query optimizers, (2) to experiment with graphical editors both the exe-
cution of a logical plan defined with relational algebra, and the execution of physical
plans defined with the physical operators of the database system. The software with
examples of databases and logical and physical plans, is downloadable for free at this
URL: http://fondamentidibasididati.it

1.4 Summary

1. DBMS is the most widespread technology for managing permanent collections
of structured data. A DBMS is a centralized or distributed system that enables
us (a) to define database schemas, (b) to choose the data structures for storing
and accessing data, (c) to store, retrieve and update data, interactively or with
programs, by authorized users and within the constraints defined in the schema.
The data managed by a DBMS is a shared resource, available for concurrent use
and is protected from hardware and software failures.

2. The main modules of a DBMS are the Storage Structures Manager, the Transac-
tion Manager, and the Query Manager.

3. A relational database is organized in terms of relations (or tables) of tuples (or
records) on which appropriate algebraic operators are defined.

4. SQL is the standard language for relational DBMSs to define and use databases.
The efficient execution of SQL queries is one of the fundamental problems re-
solved by the relational DBMSs, determining their diffusion on every type of
computer.

Bibliographic Notes

There are many books that deal with the problem of DBMS implementation at dif-
ferent levels of detail. Among the most interesting ones there are [Ramakrishnan and
Gehrke, 2003], [Silberschatz et al., 2010], [O’Neil and O’Neil, 2000], [Kifer et al.,
2005].

A book dedicated to the implementation of relational database systems is [Garcia-
Molina et al., 1999], while [Gray and Reuter, 1997] gives details about the imple-
mentation of the relational storage engine.
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Chapter 2

PERMANENT MEMORY AND
BUFFER MANAGEMENT

The first problem to be solved in implementing a DBMS is to provide a level of
abstraction of the permanent memory that makes the other modules of the system
independent of its characteristics and of those of the storage system. The desired ab-
straction is achieved with the Permanent Memory Manager and Buffer Manager. The
functionality of these modules is presented after a description of the most significant
characteristics of magnetic disk memories, which are those generally used for each
type of processing system.

2.1 Permanent Memory

The memory managed by a DBMS is usually organized in a two-level hierarchy:
the temporary memory (or main) and the permanent memory (or secondary). The
characteristics of the two memories are:1

1. Main memory

(a) Fast access to data (about 10-100 ns).
(b) Small capacity (some gigabyte).
(c) Volatile (the information stored is lost during power failures and crashes).
(d) Expensive.

2. Permanent memory with magnetic disks

(a) Slow access to data (about 5-10 ms access time for a block).
(b) Large capacity (hundreds of gigabytes).
(c) Non volatile (persistent).
(d) Cheap.

3. Permanent memory with NAND flash memory

(a) Relatively fast access to data (about 100 µs to read, 200 µs to write and some
ms to erase a block).

(b) Medium capacity (tens of gigabytes).

1. The values used as typical may become unrealistic with the rapid development of the technology.
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(c) Non volatile (persistent).
(d) Relatively expensive.

Although the costs of the three types of memory reduce continuously, their ratio
remains constant, with a temporary memory which costs several tens of times more
than a permanent memory of the same capacity.

The flash memory, with the decrease in the cost and the increase in their capacity, is
destined to establish itself for personal computers as an alternative to magnetic disks.

However, they raise new problems in the implementation of DBMSs due to some
peculiarities of the operations of this type of memory (Figure 2.1).

Access Time

Memory Read Write Erase

Magnetic Disk 12,7 ms 13,7 ms
(2 KB) (2 KB)

NAND Flash 80 µs 200 µs 1,5 ms
(2 KB) (2 KB) (128 KB)

RAM 22,5 ns 22,5 ns

Figure 2.1: Characteristics of the three types of memory

The reading and writing of data (with writing that requires twice the time of read-
ing) are faster than those of magnetic disks, but the rewriting of data is problematic
because the data must be deleted first, a slow operation that requires a few ms. To
make matters worse, there is another phenomenon: the erasing of data concerns sev-
eral blocks (64), called a memory unit, which should all be read to be deleted, in
order to rewrite the memory unit. In addition, this type of memory becomes unreli-
able after 100 000 cycles of cancellations/rewrites and their use for DBMS requires
new solutions for the management of changing data structures and for transaction
management. These themes are still the subject of research and for this reason the
topic is outside the scope of this text, and in the following we only consider magnetic
disks as permanent memory.

A magnetic disk is composed of a pile of p platters with concentric rings called
tracks used to store data, except two outer surfaces of the first and last platters. Typical
platter diameters are 2,5 inches and 3,5 inches. The rotation speed of the disk pack is
continuous with values between 5000 and 15 000 rotations per minute.

A track is the part of the disk that can be used without moving the read head and it
is divided in sectors of the same size, which are the smallest unit of transfer allowed
by the hardware and cannot be changed. Typical values for a sector size are 512,
1 KB, 2 KB or 4 KB. There are from 500 to 1000 sectors per track and up to 100 K
tracks per surface. The tracks, while being of variable size, have the same capacity
because the sectors have a different storage density.

A track is logically divided in blocks of fixed size, which are unit of data transferred
with each I/O operation. The block size is a multiple of the sector size and typical
values are 2048 and 4096 bytes, but there are systems that use larger values.

The disk driver has an array of disk heads, one per recorded surface. Each head
is fixed on a movable arm that displaces the head horizontally on the entire surface
of a disk. When one head is positioned over a track, the other heads are in identical
positions with respect to their platters.
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A cylinder is the set of tracks of the surfaces of the disks that can be used without
moving the heads. Once positioned the heads on the tracks of a cylinder, only one of
them at a time can be made active for transferring data, but the passage of reading
from one track to another on the same cylinder requires a very short time and can be
considered instantaneous. Instead, the passage from a cylinder to another requires the
mechanical displacement of the heads and is considered the slowest operation on the
disk.

The time to read or write a block, called the access time, has the following compo-
nents:

– The seek time ts, is the time needed to position the disk heads over the cylinder
containing the desired block. This time can range between 5 and 20 ms.

– The rotational latency tr, is the time spent waiting for the desired block to appear
under the read/write head. This time depend on the rotation speed of the disk.
Typical values are 3 ms for a rotation speed of 10 000 rpm (rotations per minutes).

– The transfer time tb, is the time to read or write the data in the block once the head
is positioned.

The access time to transfer a block to the temporary memory is then (ts + tr + tb),
while the time to transfer k contiguous blocks is (ts + tr + k × tb).

The access time usually dominates the time taken for database operations. To min-
imize this time, it is necessary to locate data records strategically on disk. Records
frequently used together should be stored close together, e.g. depending on their num-
ber, on the same block, the same track, the same cylinder, or adjacent cylinders.

Although many database applications adopt a two levels memory hierarchy, there
are also solutions with one or three levels of memory.

In the first case, the database is managed in main memory (main memory DBMS).
This solution is made possible by the reduction of the cost of main memories, and is
used for applications that require fast access to data.

Three levels of memory are needed for applications that use large amounts of data
(e.g. millions of gigabytes) not storable in the secondary storage and thus require
tertiary storage such as optical disks or tapes, slower than magnetic disk, but with a
much larger capacity.

Finally, a solution often adopted is RAID technology (Redundant Arrays of In-
dependent Disks), which uses the redundancy, for guarding against data loss due to
malfunctions of the disks, and the parallelism, for improving the performances. There
are seven ways to organize data in the disks, known as RAID levels, with different
characteristics in terms of read/write time, data availability and cost [Ramakrishnan
and Gehrke, 2003; Garcia-Molina et al., 1999].

2.2 Permanent Memory Manager

The Permanent Memory Manager takes care of the allocation and de-allocation of
pages within a database, and performs reads and writes of pages to and from the disk.
It provides an abstraction of the permanent memory in terms of a set of databases
each made of a set of files with page-sized blocks of bytes, called physical pages. A
database is a directory containing files for the catalog, relations and indexes.

The physical pages of a file are numbered consecutively starting from zero, and
their number can grow dynamically with the only limitation given by available space
in the permanent memory.

When a physical page is transferred to the main memory it is called a page and,
as we will see, it is represented with a suitable structure. For this reason, sometimes
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we use the term page as a synonym for physical page, and it will be clear from the
context whether we refer to a block of bytes or to a more complex structure.

Each collection of records (table or index) of a database is stored in a logical file
which in turn can be realized as a separate file of the operating system or as a part of
a single file in which the entire database is stored.

2.3 Buffer Manager

The role of the Buffer Manager is to make pages from the permanent memory avail-
able to transactions in the main memory. It is the responsibility of the buffer manager
to allow transactions to get the pages they need, while minimizing disk access oper-
ations, by implementing a page replacement strategy.

As we will see later, the performance of operations on a database depends on the
number of pages transferred to temporary memory. The cost of some operations may
be reduced by using a buffer capable of containing many pages, so that, during the ex-
ecution of the operation, if there are repeated access to the same page, the likelihood
that the desired page is already in the memory increases.

The buffer manager uses the following structures to carry out its tasks (Figure 2.2):

Resident
Pages

PID
FrameId

PinCount
Dirty

Page

Frame with disk page

Free frame

Database

getAndPinPage unpinPage setDirty flushPage

Buffer Manager

Temporary Memory

Permanent Memory

Figure 2.2: The Buffer Manager

1. The buffer pool, an array of frames containing a copy of a permanent memory page
and some bookkeeping information. The buffer pool has a fixed size, therefore,
when there are no free frames, to copy a new page from the permanent memory
an appropriate algorithm is used in order to free a frame.

To manage the buffer pool, in a frame are also stored two variables: the pin count
and dirty. Initially the pin count for every frame is set to 0, and the boolean variable
dirty is false. The pin count stores the number of times that the page currently
in the frame has been requested but not released. Incrementing the pin count is
called pinning the requested page in its frame. The boolean variable dirty indicates
whether the page has been modified since it was brought into the buffer pool from
the permanent memory.
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2. A hash resident pages table, called directory, used to know if a permanent memory
page, with a given page identifier PID, is in the buffer pool, and which frame
contains it.

The buffer manager provides the following primitives to use the pages in the buffer
pool:

1. getAndPinPage(P ). If a frame contains the requested page, it increments the pin
count of that frame and returns the page identifier to the requester (note that the
other levels of the system operate directly on a page in the buffer, and not on a
copy of it).

If the requested page is not in the buffer pool, it is brought in as follows:

(a) A free frame (with pin count 0) is chosen according to the buffer manage-
ment’s replacement policy. Several alternative solutions have been studied,
but most systems use some enhancements to the Least Recently Used (LRU)
to tune the replacement strategy via query plan information or the page type
(e.g. the root of a B+–tree).

If the frame chosen for replacement is dirty, the buffer manager flush it, i.e.
write out the page that it contains to the permanent memory.

If there are no free frames an exception is raised.
(b) The requested page is read into the frame chosen for replacement and pinned,

i.e. the pin count is set to 1, and the boolean variable dirty is set to false.
The buffer manager will not read another page into a frame until its pin count
becomes 0, that is, until all requestors of the page have unpinned it.

(c) The resident pages table is updated, to delete the entry for the old page and
insert an entry for the new page, and the page identifier is returned to the
requester.

2. setDirty(P ). If the requestor modifies a page, it asks the buffer manager to set the
dirty bit of the frame.

3. unpinPage(P ). When the requestor of a page releases the page no longer needed,
it asks the buffer manager to unpin it, so that the frame containing the page can be
reused if the pin count becomes 0.

4. flushPage(P ). The requestor of a page asks the buffer manager to write the page
to the permanent memory if it is dirty.

As we will see, the decision to unpin or flush a page are taken by the Transaction and
Recovery Manager and not by the requestor of a page.

2.4 Summary

1. The computer memory is organized as a memory hierarchy: primary or main,
secondary and tertiary. The primary memory is volatile and provides fast access
to data. The secondary memory is persistent and consists of slower devices, such
as magnetic disks. The tertiary memory is the slowest class of storage devices
(optical disks and tapes) for large data files.

2. DBMSs typically use magnetic disks because they are inexpensive, reliable and
with a growing capacity. The unit of transfer is a block of bytes of fixed size,
stored in tracks on the surfaces of the platters. The access time to a block depends
on its location on the disk relative to the position of read heads. The access time is
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about 10 ms, depending on the time to position the heads (seek time), the time for
the block to pass under the heads (rotational delay), and the time of data transfer
(transfer time).

3. In a DBMS the Permanent Memory Manager stores data in files and provides an
abstraction of memory as a set of files of data pages.

4. In a DBMS the data page requests are handled by the Buffer Manager, which
transfers the request to the Permanent Memory Manager only if the page is not
already in the buffer pool. The pages in use are pinned and cannot be removed
from the buffer pool. The modified pages are considered dirty and, when they are
not pinned, they are written back to the permanent memory.

Bibliographic Notes

The data storage on permanent memories and the buffer management are discussed
in [Ramakrishnan and Gehrke, 2003; Garcia-Molina et al., 1999; Silberschatz et al.,
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structures and algorithms to implement DBMS. Interesting papers about buffer man-
agement are [Sacco and Schkolnick, 1986; Chou and Witt, 1985].

Exercises

Exercise 2.1 A disk has the following characteristics:

– bytes per sector (bytes/sector) = 512
– sectors per track (sectors/track) = 50
– tracks per surface (tracks/surface) = 2000
– number of platters = 5
– rotation speed = 5400 rpm (rotation/minutes)
– average seek time = 10 ms

Calculate the following parameters.

1. Tracks capacity (bytes), a surface capacity, total capacity of the disk.
2. Number of disk cylinders.
3. Average rotational latency.
4. Average transfer time of a block of 4096 bytes.

256, 2048 and 51 200 are examples of valid block sizes?

Exercise 2.2 Consider the disk of the previous exercise with blocks of 1024 bytes
to store a file with 100 000 records, each of 100 bytes and stored completely in a
block,

Calculate the following parameters.

1. Number of records per block.
2. Number of blocks to store the file.
3. Number of cylinders to store the file per cylinders.
4. Number of 100 bytes records stored in the disk.
5. If the pages are stored on the disk by cylinder, with page 1 on block 1 of track

1, which page is stored on block 1 of track 1 of the next disk surface? What will
change if the disk can read/write in parallel by all the array of heads?
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6. What is the time to read serially a file with 100 000 records of 100 bytes? What
will change if the disk is able to read/write in parallel from all the array of heads
(with the data stored in the best way)?

7. Suppose that every reading of a block involves a seek time and a rotational latency
time, what is the time to read the file randomly?

Exercise 2.3 Consider a disk with the following characteristics:

– 29 = 512 bytes/sector
– 1000 sectors/track
– 10 000 cylinders
– 5 platters and 10 surfaces
– rotation speed 10 000 rpm
– the seek time is of 1 ms per track plus 1 ms per 1000 cylinders skipped.

Calculate the following parameters.

1. Total capacity of the disk.
2. The average seek time.
3. The average rotational latency.
4. The transfer time of a block (214 = 16 384 bytes).
5. The average time for accessing 10 continuous blocks in one track on the disk.
6. Suppose that half of the data on the disk are accessed much more frequently than

another half (hot or cold data), and you are given the choice to place the data on
the disk to reduce the average seek time. Where do you propose to place the hot
data, considering each of the following two cases? (Hint: inner-most tracks, outer-
most tracks, middle tracks, random tracks, etc). State your assumptions and show
your reasoning.

(a) There are same number of sectors in all tracks (the density of inner tracks is
higher than that of the outer tracks).

(b) The densities of all tracks are the same (there are less sectors in the inner
tracks than in the outer tracks).

Exercise 2.4 Give a brief answer to the following questions:

1. Explain how the read of a page is executed by the buffer manager.
2. When the buffer manager writes a page to the disk?
3. What does it mean that a page is pinned in the buffer? Who puts the pins and who

takes them off?
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Chapter 3

HEAP AND SEQUENTIAL
ORGANIZATIONS

This chapter begins the analysis of data structures provided by the Storage Structures
Manager for storing a collection of records in the permanent memory. We will be-
gin with the most simple ones, which do not use any type of auxiliary structures to
facilitate the operations on them: the heap and sequential organizations. Other solu-
tions will be presented in the following Chapters 4 – 7. With a heap organization the
records are not sorted, while with a sequential organization the records are stored in
contiguous pages sorted on a key value. We will also present the cost model, which
will be also used in following chapters, and we will show how to evaluate the per-
formance of these simple organizations. The chapter also presents the fundamental
algorithm for sorting files.

3.1 Storing Collections of Records

In the previous chapter we have presented how the Buffer Manager interacts with the
Permanent Memory Manager to read pages from, and write pages to, the disk.

A database is primarily made of tables of records, each one implemented by the
Storage Structures Manager as a file of pages provided by the Permanent Memory
Manager.

Pages are assumed to be of a fixed size, for example between 1 KB to 4 KB, and
to contain several records. Therefore, above the Storage Structures Manager, every
access is to records, while below this level the unit of access is a page.

The unit of cost for data access is a page access (read or write), and we assume
that the costs of operations in the main memory on the data in a page are negligible
compared with the cost of a page access.

The most important type of file is the heap file, which stores records in no particular
order, and provides a record at a time interface for accessing, inserting and deleting
records.

3.1.1 Record Structure

Each record consists of one or more attributes (or fields) of an elementary type, such
as numbers or character strings, and contains several additional bytes, called record
header, which are not used to store data attributes, but for record management. These
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bytes generally contain information on the length of the record, the number of at-
tributes, whether the record has been deleted, and the name of the file to which it
belongs. We will assume that records are not larger than a page and that the values of
the attributes are stored according to one of the strategies shown in Figure 3.1.

A fixed-length record

Attribute Position Value type Value

Name 1 char(10) Rossi
StudentCode 2 char(6) 456
City 3 char(2) MI
BirthYear 4 int(2) 68

Total number of characters = 20
Attribute values are separated:

a) by position Rossittttt456tttMI68
b) with a separator Rossi@456@MI@68
c) with an index∗ (1, 6, 9, 11) Rossi456MI68
d) with labels∗∗ (6, 1, Rossi)(4, 2, 456)(3, 3, MI)(3, 4, 68)

∗ The index, placed at the beginning of each record, indicates the beginning of each attribute
value.
∗∗ Each attribute value starts with a counter that tells how many characters are used to code the
position of the attribute and its value.

Figure 3.1: Representation of attribute values

3.1.2 Page Structure

When a record is stored in the database, it is identified internally by a record identi-
fier or tuple identifier (RID), which is then used in all data structures as a pointer to
the record. The exact nature of a RID can vary from one system to another. An obvi-
ous solution is to take its address (Page number, Beginning of record) (Figure 3.2a).
But this solution is not satisfactory because a record that contains variable-length
attributes of type varchar are themselves variable-length strings within a page; so up-
dates to data records can cause growth and shrinkage of these byte strings and may
thus require the movement of records within a page, or from one page to another.
When this happens all the references to the record in other data structures, most no-
tably for indexing purposes, must be updated.

To avoid this problem, another solution is usually adopted: the RID consists of two
parts (Page number, Slot number), where the slot number is an index into an array
stored at the end of the page, called slot array. containing the full byte address of a
record (Figure 3.2b). All records are stored contiguously, followed by the available
free space.

If an updated record moves within its page, the local address in the array only must
change, while the RID does not change. If an updated record cannot be stored in the
same page because of lack of space, then it will be stored in another page, and the
original record will be replaced by a forwarding pointer (another RID) to the new
location. Again, the original RID remains unaltered. A record is split into smaller
records stored in different pages only if it is larger than a page.

Each page has a page header (HDR) that contains administrative information, such
as the number of free bytes in the page, the reference at the beginning of the free
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HDR Record
Record Record

Free space
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Record Record
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Free space
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Figure 3.2: Pointers to records

space, and the reference to the next not empty page of the file.

3.1.3 File Pages Management

A collection of records is stored using appropriately the pages of a heap file. To
support data updates, the main problem to be addressed is the management of the free
space of the pages available, which requires to find a solution to problems related to
the following questions:

– Where to store new record?
– How to deal with record updates?
– How to reuse the memory that becomes available after an update or a delete of a

record?
– How to compact small fragments of memory in larger units more likely to be

reused?

When a record is inserted into a collection, assuming that the records have size
smaller than a page, the file manager proceeds as follows:

1. A file page is selected that contains free space for the new record; if the page does
not exist, the file is extended with a new page. Let P be the address of the page
where the record will be stored.

2. A reference to the beginning of the record is stored in the first free location j of
the directory of slots of the page P .

3. The RID (P , j) is assigned to the record.

To implement insertion efficiently, the system uses a table, stored on disk, containing
pairs of (fileName, headerPage), where the header page is the first page of the file,
and the following alternatives are usually considered:

– The heap file pages are organized as two double linked list of pages, those full and
those with free space. The two lists are rooted in the header page and contain all
the pages in the heap file.
When the free space of a page is used, or when a free space is created in a full
page, the page moves from one list to another.
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– In the header is stored a directory of pages and each entry contains the pair (page
identifier, the amount of free space on the page). If the directory grows and cannot
be stored in the header page, it is organized as a linked list. The information about
the amount of free space on a page is used to select a page with enough space to
store a record to be inserted.

Finally, for reasons of efficiency, the free space existing in different pages is not
compacted in one page by moving records. Therefore, it may happen that, due to a
lack of available pages, it is not possible to assign a new free page despite the fact that
the overall free space in different pages is greater than the total capacity of a page.
When this occurs, it is necessary to reorganize the database.

3.2 Cost Model

The most important criteria to evaluate a file organization are the amount of memory
occupied and the cost of the basic operations (record search, insertion, deletion, and
modification). The most important operation is the search, because the first step for
all operations is to check whether a record exists.

We will also estimate the values of the following parameters, assuming for sim-
plicity that a file R has Nrec(R) records, of equal and constant length Lr, stored in
Npag(R) pages of size Dpag:

1. Memory requirements.
2. Operations cost to1

(a) search for a record with a given key value (equality search);
(b) search for records with a key value in a certain range (range search);
(c) insert a new record;
(d) delete a record;
(e) update a record.

Due to the characteristics of the permanent memory, the operations cost will be es-
timated by considering only the operations to read and write a file page, ignoring
the cost of operations in temporary memory, which is assumed to be negligible. In
current computer the typical times of operations in temporary memory are in fact at
least 10 000 times lower than the typical access time to the permanent memory.

For simplicity, the cost of the operations will be expressed in terms of the number
of permanent memory accesses, i.e., the number of pages read or written, rather than
in terms of execution time. This simplification, however, does not affect the compar-
ison of alternative solutions, which is what matters in selecting the best alternative.
Instead, to estimate the cost of operations in terms of execution time, other factors
should be considered, such as the way in which a file is stored in permanent memory,
the buffer management technique, the implementation techniques of the operating
system and the characteristics of the device. When, in some instances, we want to
emphasize the magnitude of the execution time, we will make the simplifying as-
sumption that the time to perform an operation is a simple function of the number of
access operations:

ExecutionTime = NoAccesses× OneAccessAverageTime

1. In estimating the cost of insertion and deletion, for simplicity, we will not consider the cost of
updating service information for the management of the file pages.
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where OneAccessAverageTime, which depends on the type of permanent memory and
the size of the file pages, is assumed to be equal to 10 ms.

3.3 Heap Organization

The simplest way to organize data is to store it in file pages in the insertion order
rather than sorted by a key value. In this way, the pages allocated to data can be
contiguous or can be linked in a list.

The heap organization is the default solution used by DBMSs, and it is adequate
for the following cases:

– When the collection of records is small.
– When key search operations are infrequent, and do not require fast answers, or

when they are facilitated by the presence of appropriate indexes.

3.3.1 Performance Evaluation

Memory Requirements. Unlike more complex organizations that we will see later,
the memory occupied by a heap organization is only that required by the inserted
records: Npag(R) = Nrec(R)× Lr/Dpag.2

Equality Search. Assuming that the distribution of the key values is uniform, the
average search cost is:

Cs =


⌈
Npag(R)

2

⌉
if the key exists in the file

Npag(R) if the key does not exist in the file

Range Search. The cost is Npag(R) accesses because all file pages must be read.

Insert. A record is inserted at the end of the file, and the cost is 2.

Delete and Update. The cost is that of a key search plus the cost of writing back a
page: Cs + 1.

3.4 Sequential Organization

A sequential organization is used for efficient processing of records stored in sequen-
tial order, according to the value of a search-key k for each record. The disadvantage
of this organization is that it is costly to maintain the sequential order when new
records are inserted in full pages. For this reason, commercial DBMSs do not usually
preserve the sequential order in the case of a page overflow, and offer other more
complex organizations, which we will see later, to exploit the benefits of sorted data.

2. Here and hereafter, when we talk about memory requirements we are only considering the number
of pages to store the records, always lower than the number of pages in the file, where a portion of
the memory is used by service information and the pages may have free space initially left for record
insertions.
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3.4.1 Performance Evaluation

Memory Requirements. If record insertions are not allowed, the organization re-
quires the same memory as a heap organization. In the case of insertions, additional
memory is required to leave space in the pages at the time of loading data.

Equality Search. The cost of a search by a key value is dNpag(R)/2e, both when
the value exists in the file and when the value does not exist. If the data is stored in
consecutive pages, then a binary search has the cost dlgNpag(R)e.

Range Search. A search by the key k in the range (k1 ≤ k ≤ k2), and assuming
keys numerical uniformly distributed in the range (kmin, kmax), the ratio sf = (k2 −
k1)/(kmax − kmin), called selectivity factor, is an estimate of the fraction of pages
occupied by the records which will satisfy the condition, and the cost of the operation
is:

Cs = dlgNpag(R)e+ dsf ×Npag(R)e − 1

where the first term is the cost of the binary search to identify the page containing
k1. The number of pages occupied by the records in the range key is decreased by 1
because the first page has been found with the binary search.

Insert. If the record must be inserted in a page not full, the cost is Cs + 1. If all the
pages are full, the cost is estimated by assuming that the record must be inserted in
the middle of the file, and all subsequent Npag(R)/2 pages must be read and written
to move their records as result of a single insertion. The cost is Cs +Npag(R) + 1.

Delete and Update. The cost is Cs + 1, if the update does not change the key on
which data is sorted.

3.5 Comparison of Costs

Table 3.1 compares costs for heap and sequential organizations in consecutive pages,
with Cs as the search cost of a key value present in the file.

Table 3.1: A comparison of heap and sequential organizations

Type Memory Equality Range Insert Delete
Search Search

Heap Npag(R) dNpag(R) / 2e Npag(R) 2 Cs + 1

Sequential Npag(R) dlgNpag(R)e Cs − 1 + Cs + 1 + Cs + 1
dsf ×Npag(R)e Npag(R)

A heap organization has good performance for insertion operations, but it has bad
performances for range queries and for equality search, in particular for the search of
a key value not in the file.

A sequential organization has good performance for search operations, but it has
bad performance for insertion operations.

As we will see with other organizations, the important thing to remember is that
any solution is better than another under certain conditions and therefore the choice
of the most appropriate depends on how data is used, and on the costs to minimize.
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3.6 External Sorting

A frequent operation in a database system is sorting a collection of records for differ-
ent reasons:

– To load them in a physical organization.
– To delete the duplicates from the result of a query.
– To perform a join operation with the merge-join algorithm, an ORDER BY, a GROUP

BY, etc.

Sorting a file is a different process from sorting a table in the temporary memory,
because the number of record is usually too large to be completely stored in the
memory available. For this reason, the classic algorithms for sorting tables are not
applicable to this problem and an external sorting algorithm is used. The evaluation
of this algorithm is also different from those used for the temporary memory. Instead
of the number of comparisons, only the number I/O operations are considered.

Let Npag(R) be the number of file pages, and B the buffer pages available. The
classical external sorting algorithm, called merge-sort, consists of two phases:

1. The sort phase. B file pages are read into the buffer, sorted, and written to the
disk. This creates n = dNpag(R)/Be sorted subset of records, called runs, stored
in separate auxiliary files, numbered from 1 to n. The runs have all the same
number of pages, B, except the last.

2. The merge phase consists of multiple merge passes. In each merge pass,Z = B−1
runs are merged using the remaining buffer page for output. At the end of a merge
pass, the number of runs becomes n = dn/Ze. A merge pass is repeated until
n > 1.

The final auxiliary file contains the sorted data.
The parameter Z is called the merge order, and Z + 1 buffer pages are needed to

proceed with a Z-Merge.

Example 3.1
Let us show how to sort the file A0 containing 12 pages, with file and buffer
pages capacity of 2 records, B = 3 and 2-merge passes (Figure 3.3):
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Figure 3.3: External sorting using merge-sort with Z = 2



22 CHAPTER 3 Heap and Sequential Organizations c© 2015 by Albano et al.

– The initial sort phase creates the runs A1, A2, A3 and A4.
– The first merge pass creates the runs A5 and A6 by merging A1, A2 and A3,
A4.

– The second merge pass creates the sorted data A7 by merging A5, A6.

3.6.1 Performance Evaluation

Suppose that B buffer pages are available. The external sorting cost is evaluated in
term of number of passes, i.e., the number of times that the Npag(R) pages are read
in and written out. The number of passes is the initial one to produce the sorted
runs, plus the number of the merge passes. Therefore, the total cost of the merge-sort
algorithm in terms of number of pages read and written is:

Csort(R) = SortPhaseCost + MergePhaseCost

Csort(R) = 2×Npag(R) + 2×Npag(R)×NoMergePasses

If Npag(R) ≤ B× (B−1), the data can be sorted with a single merge pass, as it will
be assumed in some cases, and so with two passes the cost becomes

Csort(R) = 4×Npag(R)

In general, the number of passes required in the merge phase is a function of the
number of file pages Npag(R), the number S of initial runs, and the merge order
Z = B − 1. S depends on Npag(R) and the number of buffer pages available to
create the initial runs (S = dNpag(R)/Be). After each merge pass, the maximum
length of the runs increases of a factor Z, and so their number becomes

dS/Ze, dS/Z2e, dS/Z3e, . . .

The algorithm terminates when a single run is generated, that is for the minimum
value of k such that Zk ≥ S, quantity that for a certain value of Npag(R), decreases
with the increase of Z. Therefore the number of passes required in the merge phase
is: k = dlogZ Se, and the total cost of the merge-sort is:

Csort(R) = 2×Npag(R)+2×Npag(R)×dlogZ Se = 2×Npag(R)×(1+dlogZ Se)

Table 3.2 shows some values of the number of merge passes, cost and time to sort
a file — expressed in minutes and calculated assuming that the reading or writing a
page costs 10 ms — depending on the number of pages, the size of the buffer and the
merge order. The quantities shown justify the improvements used in DBMS to reduce
the external sorting costs.

For example, a technique has been studied to revise the sort phase in order to in-
crease the length of the runs and thereby reduce the number of number of merge
passes. The initial runs become long on the average 2B, with the method replace-
ment sort [Knuth, 1973], and B × e, where e = 2.718 . . ., with the method natural
selection [Frazer and Wong, 1972].
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Table 3.2: Total costs of the merge-sort

B = 3, Z = 2 B = 257, Z = 256

Merge Time Merge Time
Npag(R) Passes Cost (m) Passes Cost (m)

100 6 1400 0.23 0 200 0.03
1000 9 20 000 3.33 1 4000 0.67
10 000 12 260 000 43.33 1 40 000 6.67
100 000 16 3 400 000 566.67 2 600 000 100.00
1 000 000 19 40 000 000 6666.67 2 6 000 000 1000.00

Curiosity. A typical DBMS sort 1 M of 100 byte records in 15 minutes.
The best result in 2001 was 3.5 seconds obtained with a SGI system, 12 CPUs,
96 disks and 2 G of RAM. Another criterion sometimes used to evaluate an
external sorting algorithm is how much data it sorts in one minute (minute
sort). Every year the Sort Benchmark Home Page shows the results of the best
solution for different evaluation criteria. In 2009 the data sorted in one minute
were 500 GB and 1353 GB in 2011, a result obtained by TritonSort, with a
system with “52 nodes× (2 Quadcore processors, 24 GB memory, 16×500 GB
disks), Cisco Nexus 5096 switch.”

Table Organizations in INGRES. As with any DBMS, a table R has
initially a heap organization, then, once data has been loaded, it is possible to
reorganize the table as sorted, with the command:
MODIFY R TO HEAPSORT
ON Attr [ASC | DESC]{, Attr [ASC | DESC]}

The command also includes the possibility to leave some free space in the data
pages (FILLFACTOR). Record insertions in the table that produce overflows do
not preserve the sorted order.

3.7 Summary

1. The Storage Structures Manager primarily implements a database table of records
as a heap file of pages, and each page contains one or more records. A record is
identified by a RID, the pair (page identifier, position in the page), and it can have
fixed-length fields (easier to manage) or variable length fields (more complex to
manage, especially in the presence of fields greater than the size of a page).
In the case of updates, there is the problem of managing the free space of pages
available in a file, which requires appropriate solutions to avoid wasting memory
and performance degradation.

2. Data organization is a way to store it in a file, which is evaluated in terms of
memory occupied and number of file pages to read or write to perform operations.

3. The heap and sequential organizations are used when the number of records is
small or the main interest is in minimizing the storage requirement. Otherwise,
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other organizations are used, as will be seen in the next chapters.
4. The heap organization is the easiest way to store data in files, but is not suitable

for searching a small number of records.
5. The sequential organization stores the data sorted on the value of a search key and

has better performance than the heap one for search operations, but the insertion
of records in general does not preserve the sorted order.

6. Sorting records on the value of an attribute is the typical operation on a file and
is often used in the operations of other organizations. The merge-sort is the most
widely-used external sorting algorithm and its performance depends on the num-
ber of buffer pages available.

Bibliographic Notes

Heap and sequential organizations are presented in every book cited in the biblio-
graphic notes of Chapter 1. External sorting is described in [Knuth, 1973], [Tharp,
1988].

Exercises

Exercise 3.1 Explain what is meant by file reorganization and give an example of
file organization that requires it, specifying which operations motivate it.

Exercise 3.2 Discuss the advantages and disadvantages of records with fixed fields
vs variable fields, and of records with fixed length vs variable length.

Exercise 3.3 Let R(K,A,B, other) a relation with Nrec(R) = 100 000, a key K
with integer values in the range (1, 100 000), and the attribute A with integer values
uniformly distributed in the range (1, 1000). The size of a record of R is Lr = 100
bytes. Suppose R stored with heap organization, with data unsorted both respect to
K and A, in pages with size Dpag = 1024 bytes.

The cost estimate C of executing a query is the number of pages read from or
written to the permanent memory to produce the result.

Estimate the cost of the following SQL queries, and consider for each of them the
cases that Attribute is K or A, and assume that there are always records that satisfy
the condition.

1. SELECT *
FROM R
WHERE Attribute = 50;

2. SELECT *
FROM R
WHERE Attribute BETWEEN 50 AND 100;

3. SELECT Attribute
FROM R
WHERE Attribute = 50
ORDER BY Attribute;

4. SELECT *
FROM R
WHERE Attribute BETWEEN 50 AND 100
ORDER BY Attribute;
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5. SELECT Attribute
FROM R
WHERE Attribute BETWEEN 50 AND 100
ORDER BY Attribute;

6. INSERT INTO R VALUES (. . . );
7. DELETE

FROM R
WHERE Attribute = 50;

8. UPDATE R
SET A = 75
WHERE K BETWEEN 50 AND 100;

Exercise 3.4 Assuming that a page access requires 10 ms, estimate the execution
time of the SQL queries of the previous exercise in the case of a sequential organiza-
tion with records sorted on the key K values.

Exercise 3.5 Consider a fileRwith 10 000 pages to sort using 3 pages in the buffer,
and to write the sorted file to the disk.

1. How many runs are produced in the first pass?
2. How many 2-way merge phases are needed to sort the file?
3. How much time does it take to sort the file if a page access requires 10 ms?
4. How many buffer page B are needed to sort the file with one merge phase?

Exercise 3.6 Consider a file R with Nrec(R) = 10 000 records of 100 bytes stored
in pages with size 1 K. Assume that there are B = 5 buffer pages to sort the file, and
to write the sorted file to the disk.

1. How many runs are produced in the first pass, and how long will each run be?
2. How many passes are needed to sort the file completely?
3. Which is the cost of sorting the file?
4. What is the number of records Nrec(R) of the largest file that can be sorted in just

two passes?
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Chapter 4

HASHING ORGANIZATIONS

After having seen the simple heap and sequential organizations, in this chapter, and
the next, we will consider more complex table organizations based on a key, allowing
the search for a record with a given key value with as few accesses as possible to the
permanent memory. The chapter is dedicated to the study of a procedural method,
also known as hashing, proposed since the early fifties to manage data sets in tem-
porary memory. The next chapter will be dedicated instead to organizations based on
trees.

4.1 Table Organizations Based on a Key

The goal of a table organization based on a key is to allow the retrieval of a record
with a specified key value in as few accesses as possible, 1 being the optimum. To
this end, a mapping from the set of keys to the set of records is defined. The mapping
can be implemented with a primary organization or with a secondary organization,
defined as follows.

� Definition 4.1 Primary Organization

A table organization is said to be primary if it determines the way the records
are physically stored, and therefore how the records can be retrieved; other-
wise it is said to be a secondary organization.

In the case of a primary organization the mapping from a key to the record can be
implemented as a function, by means of either a hashing technique or a tree structure.

In the first case a hash function h is used that maps the key value k to the value
h(k). The value h(k) is used as the address of the page in which the record is stored.
In the second case a tree structure is used and the record is stored in a leaf node.

� Definition 4.2 Static or Dynamic Primary Organization

A primary organization is static if once created for a known table size, the
performance degrades as the table grows because overflow pages must be
added, and a reorganization must be performed.
A primary organization is dynamic if once created for a known table size, it
gradually evolves as records are added or deleted, thus preserving efficiency
without the need for reorganization.
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In the case of a secondary organization the mapping from a key to the record is im-
plemented with the tabular method, listing all inputs and outputs, commonly known
as an index. A secondary organization helps answer queries but does not affect the
location of the data.

An index in this context has a role similar to that of a book. The pages of a book
are ordered, and to find information about a particular subject, the index in the back
of the book is used. In a similar way, in the case of a set of records, to find a record
with a given key, first the index is probed in order to get the record RID, and then the
record is retrieved by means of the RID.

� Definition 4.3 Secondary Organization

An index I on a key K of a set of records R is a sorted table I(K,RID) on
K, withNrec(I) = Nrec(R). An element of the index is a pair (ki, ri), where
ki is a key value for a record, and ri is a reference (RID) to the corresponding
record. The records of R are stored with an independent organization.

An index is stored in permanent memory using a primary organization.

In the literature the terminology is not very uniform, and the terms “primary” and
“secondary” are usually used to distinguish two types of indexes: “primary” for in-
dexes on the primary key, i.e. “organizations for primary key”, and “secondary” is
used for indexes on other attributes, i.e. “organizations for secondary key”.

In the rest of the chapter we analyze the static and dynamic solutions for the proce-
dural approach, while the tree based approach and indexes will be considered in the
next chapter.

4.2 Static Hashing Organization

This is the oldest and simplest method for a primary table organization based on
a key. Since here we are only interested in the record keys, we will talk about the
storage and retrieval of keys rather than the storage and retrieval of records with a
given key value. Moreover, we assume that records have the same and fixed size, and
that the key k has a type integer. The N records of a table R are stored in an area,
called primary area, divided intoM buckets that may consist of one or several pages.
We will assume that the buckets consist of one page with a capacity of c records, and
so the primary area is a set of M pages numbered from 0 to M − 1.

A record is inserted in a page whose address is obtained by applying a hashing
function H to the record key value (Figure 4.1). The ratio d = N/(M × c) is called
the primary area loading factor.

Records hashed to the same page are stored in order of insertion. When a new
record should be inserted in a page already full, an overflow is said to have occurred,
and a strategy is required to store the record elsewhere.

The design of a static hashing organization requires the specification of the follow-
ing parameters:

– The hashing function.
– The overflow management technique.
– The loading factor.
– The page capacity.
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Figure 4.1: Static hashing organization

The Hashing Function. A good hashing function must randomize the assign-
ment of keys over the entire address space. A universally good hashing function does
not exist; some experimental results on the performances of different hashing func-
tions have shown that the following simple function works just as well as more com-
plicated ones:

H(k) = k mod M

with M a prime number.

The Overflow Management Technique. In addition to a careful choice of the
hashing function, the method used to handle overflows is also very important. The
most common techniques used in permanent memories are open overflow (or open
addressing) and chained overflow (or closed addressing).

Open overflow performs a primary area linear search to find the first available page
to insert the overflow record. When the last page has been searched, the process starts
back at the first one.

Chained overflow inserts the overflow record in another page of a separate overflow
area which is pointed to from the home page. Additional overflow records from the
same page are chained through the overflow area.

The performance of this organization will depend on the number of overflows, and
this will vary according to the loading factor and the page capacity.

The Loading Factor. In general, lower loading factors and higher page capacities
give better performances, but occupy more memory. For a low loading factor (< 0.7)
the retrieval requires just 1 access on average. For high loading factors (> 0.8), open
addressing deteriorates rapidly, while the chained overflow still performs quite well.

The Page Capacity. The pages capacity c is a very important factor for the per-
formance of a hash organization. Suppose we need to store 750 records in 1000 pages
with c = 1, or in 500 pages with c = 2. In both cases, the load factor is d = 0.75 =
75%, but the performances are very different. In fact, in the first case the overflows
are the 29.6%, and in the second case, while the collisions increase because M is
halved, the overflows become the 18.7%, with a reduction of 37%.
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Since overflows significantly degrade the performance of hashing organizations in
the permanent memory, we may further increase the size of the pages. For example,
keeping the load factor d = 0.75 = 75%, but choosing c = 10, the performances
improve because the overflows are reduced to 4%.

4.2.1 Performance Evaluation

A study of the behavior of the a hash organizations taking into account the character-
istics of permanent memories, and in particular the size of the pages, is reported in
[Severance and Duhne, 1976]. From this study follows that for page capacity less than
10, it is preferable to give up hash organizations. Since the page size Dpag is fixed
by the permanent memory manager, their capacity depends on the average length of
the record Lr, and therefore this organization is used if Lr < Dpag/10.

A static hashing organization has excellent performance as long as there are no over-
flows to manage: a record retrieval requires 1 page access. Overflows quickly degrade
performance and so a reorganization must be performed of the hash structure, creating
a new primary area with more space, choosing a new hashing function, and reloading
the data.

To reduce the cost of data loading, and to improve then performance, the operation
proceeds in two stages: first it stores in an auxiliary file T the pairs (Record with key
k, H(k)), which is sorted on the addresses H(k) generated; then the records in T are
stored in the hash structure, by reading and writing each page only once.

The main drawback of a static hashing organization is that it does not support range
queries, i.e. the retrieval of all records with a key value which lies within a range of
values, such as “find all keys greater than k1 but less than k2”.

4.3 Dynamic Hashing Organizations

Several dynamic hashing organizations have been proposed to avoid the reorganiza-
tion which is necessary in static hashing organizations. The proposals can be classi-
fied into two categories: those that make use of both a primary area for data pages,
and an auxiliary data structure (a kind of index), whose size changes with the pri-
mary area size, and those in which only the size of the primary area changes dy-
namically. In both cases, the hashing function will automatically change when the
structure changes dimension, in order to allow the retrieval of a key in about one
access.

In the following we present the virtual hashing and the extendible hash as examples
of organizations with auxiliary data structures, as well as the linear hashing as exam-
ple of organization that uses instead only the primary area that is expanded linearly.
Reference to other more elaborate methods are given in the bibliographic notes.

4.3.1 Virtual Hashing

Litwin proposed a new type of hashing called Virtual Hashing that works as follows
[Litwin, 1978]:

1. The data area contains initially M contiguous pages with a capacity of c records.
A page is identified by its address, a number between 0 and M − 1. M can also
be a small number. For example, the author started his experiments with M = 7.

2. A bit vector B is used to indicate with a 1 which page of the data area contains at
least a record.
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3. Initially a hashing function H0 is used in order to map each key value k to an
address m = H0(k), between 0 and M − 1, where the record with the key k
should be stored. If an overflow is generated then

(a) the data area is doubled, maintaining contiguous the pages;
(b) the hashing function H0 is replaced by the new hashing function H1 that

produces page addresses between 0 and 2M − 1;
(c) the hashing function H1 is applied to k and all the records of the original

overflowing page m to distribute the records between m and a new page m′
in the new half of the table. The records of pages different from m are not
considered because they must not change their pages.

This method requires the use of a hashing functions series H0, H1, H2, . . ., Hr; in
general, Hr produces a page address between 0 and 2rM − 1.

The index of the hashing function H is the number of times that the data area has
been doubled.

The hashing functions must satisfy the following property for every key value k:

Hj+1(k) = Hj(k) or

Hj+1(k) = Hj(k) + 2j ×M with j = r, r − 1, . . . , 0

In other words, the application of Hj+1 to a key k gives Hj(k) = m (the new page
address generated is the original one), or m+ 2jM (the corresponding page address
in the new half of the doubled data area).

The function suggested by Litwin is

Hr(k) = k mod (2r ×M)

Let k be the key of a record to be retrieved, and r the number of doubling of the data
area. The address of the page that contains the desired record, if it exists, is computed
with the recursive function in Figure 4.2.

function PageSearch(r, k: integer): integer
begin

if r < 0
then write “The key does not exist”;
else if B(Hr(k)) = 1

then PageSearch := Hr(k)
else PageSearch := PageSearch(r − 1, k)

end;

Figure 4.2: Search operation

The use of the vector B, stored in the main memory, allows to establish with a single
access if the record with a specified key is present in a non-empty page.

Example 4.1
Suppose that we insert the key 3820 into the initial hash structure of Figure 4.3a,
with M = 7 and c = 3. Applying the function Hr(k) = H0(3820) we get
m = 5: since B(5) = 1, the new key must be stored in the page with address 5.
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This page is full, therefore it is necessary to double the data area. The records in
the page with address 5 are distributed between this page and a new page with
address m′ = 12, by means of the function H1. The vector B is doubled too and
its values are updated, as shown in Figure 4.3b.

From now on the transformation function H1 will be used to access the
hash structure. Let us now assume that we must insert the key 3343, with
H1(3343) = 11. The zero bit in the vector B indicates, however, that this page
has not yet been used, and therefore the key transformation H0(3343) = 4 is
applied. Being the page 4 full, it is still necessary to use the procedure for the
resolution of the overflow, which in this case does not require a doubling of the
primary area, because the page 11 already exists in the structure. It is sufficient
to set to 1 the bit in the vector B and then transform with H1 all the keys of
the original page 4 (7830, 1075, 6647) plus the new one 3343, distributing them
between the pages 4 and 11.
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Figure 4.3: Virtual Hashing: a) initial structure and b) the structure after the
first overflow from page 5

Memory Requirements. The memory occupied is that required for the data area
and for the binary vector B. The memory is not, however, well used, because of the
frequent doublings of the data area. The disadvantage of this solution lies in the fact
that the loading factor of the data area fluctuates between 0.45 and 0.9 and is on
average 0.67. The advantage of this solution is that each record is retrieved with one
access, if the vector B is stored in the main memory.

Observation. This solution, as it has been presented, is of mainly historical inter-
est, having as main limit the doubling of the data with contiguous pages. However,
his exposure is useful for illustrating another solution, the extendible hashing, which
overcomes the limitations of virtual hashing with a different use of the vector B.

4.3.2 Extendible Hashing *

Unlike virtual hashing, Extendible hashing uses a set of data pages, and an auxiliary
data structure B, called directory, an array of pointers to data pages.

Let r be a record with key k. The value produced by the hash function H(k) is a
binary value of b-bit, called hash key (a typical value for b is 32), which, however,
is not used to address a fixed set of pages as in virtual hashing. Instead, pages are
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allocated on demand as records are inserted in the file, considering only the initial p
bits of b, which are used as an offset into B. The value of p grows and shrinks with
the number of pages used by data. The number of B entries is always a power of 2,
that is 2p. We call p the directory level. The value of p is stored in B.

A B entry is a pointer to a data page containing records with the same first p′ bit of
their hash key, with 0 ≤ p′ ≤ p. We call p′ the data page level, and its value is stored
in the data page. The value of p′ depends on the evolution of the data pages as result
of overflows, as explained below, and it is used to determine membership in a data
page.

Let us assume that initially the hash structure is empty, p = 0, and consists of a
directory with one entry containing a pointer to an empty page of size c (Figure 4.4a).
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Figure 4.4: Extendible Hashing structure: a) initial; b) doubling of directory
after an overflow from page 1, and c) after page 1 split

The first c records inserted are stored in the page. In general, when we attempt to
insert the next record into a full page n (in the example n = 1), there are two possi-
bilities, depending on the value of p′.

1. If p′ = p the operation concerns the data page and the directory B.

(a) B is doubled and its level p takes the value p + 1 (Figure 4.4b). Let w be the
bits of the previous value of p, indexing one of the entries of the previous B.
The entries of the doubled B indexed by both the binary values w0 and w1
each contains a pointer to the same data page that the w entry used to point to.

(b) Since now p′ < p, the next case applies to deal with the data page with the
overflow.

2. If p′ < p the operation concerns the data page only.

(a) The data page n is split in two (n and n′), and their levels p′ take the value
p′ + 1 (Figure 4.4c).

(b) The records of page n are distributed over n and n′, based on the value of the
first (p′ + 1) high-order bit of their hash keys: records whose key has 0 in the
(p′ + 1)th bit stay in the old page n, and those with 1 go in the new page n′.

(c) The pointers in the B entries are updated so that those that formerly pointed to
n now point either to n or to n′, depending on their (p′+1)th bit (Figure 4.4c).

In general, if B has several entries with pointers to the same page, then the entries are
contiguous and in number of 2q, for some integer q. This means that a page pointed
by 2q contiguous entries contains all and only those records with hash keys with
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the same prefix long exactly p′ = p − q bit. For example, Figure 4.5a shows the
B structure after the split of the data page 2 in Figure 4.4c: the entries B(00) and
B(01) point to the same page that contains records with hash keys prefix 0 (p′ = 1).
Figure 4.5b shows B after the split of page 3.
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Figure 4.5: Extendible hash structure: a) after an overflow from page 2 and b)
after an overflow from page 3

If after a delete operation, the contents of two pages ‘close’ can be stored in only one
of them, then the two pages are merged, the new data page levels is p′ − 1 and B
is updated. Two pages are said to be ‘close’ if they are identified by the same value
p′ and their records differ for the p′th value of their hash key. If the only two pages
‘close’ with (p′ = p) are merged, B is halved. For example, if after a delete operation
in page 4 (Figure 4.5b), the two ‘close’ pages 3 and 4 are merged, and the structure
will become again that shown in Figure 4.5a.

The advantage of this method is that performance does not degrade as the file
grows, and the directory B keeps the space overhead low. The retrieval of a record
involves an additional level of indirection since we must first access B, but this extra
access has only a minor impact on performance, since most of the directory will be
kept in main memory and thus the number of page accesses is usually only slightly
higher than one.

4.3.3 Linear Hashing

The basic idea of this method is again to increase the number of data pages as soon
as a page overflows; however, the page which is split is not the one that flows over,
but the page pointed by the current pointer p, initialized to the first page (p = 0) and
incremented by 1 each time a page is split [Litwin, 1980]. Overflow management is
necessary because the pages that flow over are not generally split: a page will only be
split when the current pointer reaches its address.

Initially,M pages are allocated and the hash function isH0(k) = k mod M . When
there is an overflow from a page with addressm ≥ p, an overflow chain is maintained
for the pagem, but a new page is added. The records in page p, and possible overflows
from this page, are distributed between the page p and the new page using the hash
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function H1(k) = k mod 2M , which generates addresses between 0 and (2M − 1).
Figure 4.6 shows an example with M = 7, c = 3, where two overflows from pages 2
and 3 have already occurred, and so pages 0 and 1 have been split. The arrival of key
3820 generates an overflow from page 5 and page 2 is split.
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Figure 4.6: Expansion steps in linear hashing

To retrieve a record with key value k, the page address is computed with the following
function:

PageAddress(p: int, k: int): int :=
if H0(k) < p then H1(k) else H0(k)

After M overflows, the memory will be 2M pages. Pointer p is set to 0, function H0

is replaced by H1, H1 by H2 = k mod 22M , and the process continues. In general,
after r doublings of the data, the function Hr(k) = k mod 2rM will be used.

Linear hashing has performances similar to those of extendible hashing.

Another interesting example of this kind of solution is the Spiral Hashing, proposed
by Martin [Martin, 1979]. The name is derived from considering the memory space
organized as a spiral rather than as a line. Like linear hashing, spiral hashing requires
no index, but it has both a better performance and storage utilization because of the
following interesting properties, in contrast to linear hashing: the hashing function
distributes the records unevenly over the data pages. The load is high at the beginning
of the active address space and tapers off towards the end. Therefore the page that is
split is the one that is most likely to overflow.

4.4 Summary

1. Hashing organizations are those that give the best result when a record must be
retrieved using the record key: a hash function applied to the key provides the
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page address that could hold the record with the specified key. The average search
cost is a good approximation of what is obtainable with a perfect transformation,
in particular if use is made of a dynamic organization. Another great advantage of
these techniques is the simplicity of the implementation.
A static organization requires a reorganization when the amount of data increases
in order to avoid performance degradation, whereas this phenomenon is not present
in a dynamic organization, which adapts to the number of records present.

2. The most important parameter in the design of a static hashing organization is the
load factor of the primary area, which influences both the cost of operations and
the memory requirement. With regard to the overflow management techniques, the
best performance is obtained with the management of the overflow with separate
chaining, which enables a search with an average number of accesses near unity
and a memory occupation only a few percentage points (5 – 10%) more than
strictly necessary.

3. Another feature of hashing organizations is that the average cost of the operations
is generally low, but in the worst case can be considerably higher, and it is not
always possible to estimate the cost precisely. A borderline case is given by the
organization with static overflow handled by open addressing: in the worst case,
the search for a record is equivalent to the cost of a scan of the entire primary area.
Another worst case is when in a dynamic organization, after a page split, all the
records are assigned again to the same page.

4. Hashing organizations do not support range queries, i.e. the retrieval of all records
with a key value which lies within a range of values.

Bibliographic Notes

Static hashing organizations are presented in every book cited in the bibliographic
notes of Chapter 1.

The first proposal of a dynamic hashing organization was made for the temporary
memory [Knott, 1975], and then the approach was extended to the permanent mem-
ory by Litwin [Litwin, 1978, 1980] and Scholl [Scholl, 1981] Mullin [Mullin, 1985].
Larson [Larson, 1982] and Ramamohanarao [Ramamohanarao, 1984] have instead
improved linear hashing.

In [Cesarini and Soda, 1991] an interesting dynamic hashing organizations is pre-
sented by combining a variant of the spiral hashing with a particular management
technique of overflows.

A review of dynamic hashing organizations is presented in [Enbody and Du, 1988].

Exercises

Exercise 4.1 The CREATE TABLE statement of a relational system creates a heap-
organized table by default, but the DBA can use the following command to transform
a heap organization into a hash primary organization:

MODIFY Table TO HASH ON Attribute;

The manual contains the following warning: “Do not modify a table’s structure from
its default heap structure to a keyed (i.e. hash) structure until the table contains most,
if not all, of its data, . . . , (otherwise) query processing performance degrade upon
adding extra data”. Explain what determines the performance degradation.

Exercise 4.2 LetR(K,A,B, other) be a relation with an integer primary keyK. In
this book it has been shown how the relation is stored with a primary static hashing
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organization. Explain how to modify the operations when the static hashing organi-
zation is made using an integer non-key attribute A.

Exercise 4.3 Let R(K,A,B, other) be a relation with Nrec(R) = 100 000, Lr =
100 bytes, and a key K with integer values in the range (1, 100 000). Assume the
relation stored with a primary static hashing organization using pages with size
Dpag = 1024 bytes and a loading factor d = 0, 80.

Estimate the cost of the following SQL queries, assuming that there are always
records that satisfy the condition.

1. SELECT ∗
FROM R;

2. SELECT ∗
FROM R
WHERE K = 50;

3. SELECT ∗
FROM R
WHERE K BETWEEN 50 AND 100;

4. SELECT ∗
FROM R
WHERE K BETWEEN 50 AND 100
ORDER BY K;

Exercise 4.4 Let R(K,A,B, other) be a relation with Nrec(R) = 100 000, Lr =
100 bytes, and a keyK with integer values in the range (1, 100 000), and the attribute
A with integer values uniformly distributed in the range (1, 1000) and LA = 4. As-
sume the relation stored using pages with size Dpag = 1024 bytes, and the following
queries must be executed:

1. Find all R records.
2. Find all R records such that A = 50.
3. Find all R records such that K ≥ 50 and K < 100.

Which of the following organizations is preferable to perform each operation?

1. A serial organization.
2. A static hashing organization.

Exercise 4.5 Let R(K,A,B, other) be a relation with Nrec(R) = 100 000, Lr =
100 bytes, and a key K with integer values in the range (1, 100 000), and LK =
4. Assume the relation stored using pages with size Dpag = 1024 bytes, and the
following queries must be executed:

1. Find all R records.
2. Find all R records such that K = 50.
3. Find all R records such that K ≥ 50 and K < 100.
4. Find all R records such that K ≥ 50 and K < 55.
5. Find all K values.

Which of the following organizations is preferable to perform each operation?
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1. A sequential organization.
2. A static hashing organization.
3. An unclustered hash index I .

Exercise 4.6 Consider a linear hashing organization, with M = 3 and each page
holding 2 data entries. The following figure shows how the keys {4, 18, 13, 29, 32}
are stored.

0 18
1 4 13
2 29 32

Show how the structure changes by inserting then the following keys in the order (9,
22, 44, 35).



Chapter 5

DYNAMIC TREE-STRUCTURE
ORGANIZATIONS

In the previous chapter we saw primary organizations with the procedural approach,
highlighting the advantages and disadvantages, in particular, the inability to search
by key ranges, which in many cases precludes the use of the techniques illustrated.
For this reason research has been directed from the beginning of the sixties towards
an alternative approach based on tree structures. The tree structures presented in this
chapter are among the most important ones in computer science because of their
versatility and performance characteristics, and are commonly used by both operating
systems and commercial DBMSs.

5.1 Storing Trees in the Permanent Memory

Balanced binary trees, such as the AVL trees that are used for main memory data
structures, are not well suited for permanent memory. First of all, with a binary tree,
the search for an element of a set may involve a high number of accesses to the
permanent memory. For example, to search through a set with one million elements,
organized with a binary tree, without any attention to the way in which the nodes are
stored in pages of the permanent memory, requires an average of lg 1 000 000 = 20
accesses. The second point is that for large and volatile sets an algorithm to keep a
binary tree balanced can be very costly.

A solution to the first problem can be to store the nodes of a binary tree into the
pages of the permanent memory properly. Figure 5.1 shows an example with pages
that may contain seven nodes. From every page, eight different pages can be accessed,
so that the tree behaves as a multiway search tree.

Figure 5.1: Paged binary tree
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This layout of the tree reduces the search cost. For example, if the page capacity is
of 100 nodes, for the index of the previous example the cost of a search would be at
most log100 1 000 000 = 3 accesses. Two problems are still to be solved: how to keep
the structure balanced in presence of insertions and deletions, and how to keep pages
almost full.

A solution to both problems is a particular perfectly balanced multiway tree struc-
ture, called a B–tree, proposed by Bayer and McCreight in 1972, which ensures, in
an elegant way, a minimum occupancy of each page with a simple balancing opera-
tion. In the following, we first present the properties of the B–tree and then those of
a variant called a B+–tree, which is the one that is commonly used.

5.2 B–trees

For simplicity, as with hashing organizations, we will talk about the storage and
retrieval of keys rather than the storage and retrieval of records with a given key
value, and we denote a record entry with key k as k∗. Moreover, we assume that
records have the same and fixed size, and that keys are integers.

� Definition 5.1 A B–tree of order m (m ≥ 3) is an m-way search tree
that is either empty or of height h ≥ 1 and satisfies the following properties:

1. Each node contains at most m− 1 keys.
2. Each node, except the root, contains at least dm/2e − 1 keys. The root

may contain any number n of keys with n ≤ m− 1.
3. A node is either a leaf node or has j+ 1 children, where j is the number

of keys of the node.
4. All leaves appear on same level.
5. Each node has the following structure:

[p0, k1∗, p1, k2∗, p2, . . . kj∗, pj ]

where:
– The keys are sorted: k1 < . . . < kj .
– pi is a pointer to another node of the tree structure, and is undefined

in the leaves.
– Let K(pi) be the set of keys stored in the subtree pointed by pi. For

each non-leaf node, the following properties hold:
– ∀y ∈ K(p0), y < k1
– ∀y ∈ K(pi), ki < y < ki+1, i = 1, . . . j − 1

– ∀y ∈ K(pj), y > kj

� Definition 5.2 Height

The height h of a B–tree is the number of nodes in a path from the root to a
leaf node.

Figure 5.2 shows an example of a B–tree of order 5, with height 3. Note that if
the tree is visited according to the in-order traversal, all the keys will be visited in
ascending order of their values.
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46∗

27∗ 37∗ 66∗ 79∗

10∗ 15∗ 20∗ 25∗ 30∗ 35∗ 40∗ 45∗ 50∗ 55∗ 60∗ 65∗ 68∗ 71∗ 74∗ 78∗ 81∗ 85∗ 90∗ 95∗

Figure 5.2: Example of a B–tree with m = 5

5.2.1 Operations

Search. The search of a key k starts at the root node. If the key is not in the root,
and h > 1, the search continues as follows:

1. If ki < k < ki+1, 1 ≤ i ≤ m, then the search continues in the subtree pi.
2. If km < k, then the search continues in the subtree pm.
3. If k < k1, then the search continues in the subtree p0.

If the key value is not found in a leaf node, the search is unsuccessful, otherwise the
search cost is ≤ h.

Insertion. The insertion of a key k into a B–tree is also quite simple. First, a search
is made for the leaf node which should contain the key k. An unsuccessful search
determines the leaf node Q1 where k should be inserted.

If the node Q1 contains less than m − 1 keys, then k is inserted and the operation
terminates. Otherwise, if Q1 is full, it will be split into two nodes, with the first half
of the m keys that remain in the old node Q1, the second half of the keys that go into
a new adjacent node Q2, and the median key, together with the pointer to Q2, that is
inserted into the father node Q of Q1, repeating the insertion operation in this node.
This splitting and moving up process may continue if necessary up to the root, and if
this must be split, a new root node will be created and this increases the height of the
B–tree by one.

Note that the growth is at the top of the tree, and this is an intrinsic characteristic
of a B–tree to ensure the important properties that it always have all the leaves at the
same level, and each node different from the root is at least 50% full.

Alternatively, if an adjacent brother node of Q1 is not full, the insertion can be
performed without splittingQ1 by applying a rotation technique, as explained for the
deletion operation.

Example 5.1
Let us show the effect of the insertion of the key 70 in the B–tree represented
in Figure 5.2.

1. The key 70 must be inserted in the node Q1.

66∗ 79∗
Q

50∗ 55∗ 60∗ 65∗ 68∗ 71∗ 74∗ 78∗
Q1

81∗ 85∗ 90∗ 95∗

Figure 5.3: Insertion of key 70 – Step 1
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2. The node Q1 is full, and it is split into two nodes Q1 and Q2, and the median
key 71, together with the pointer to Q2, is inserted into the node Q.

66∗ 71∗ 79∗
Q

50∗ 55∗ 60∗ 65∗ 68∗ 70∗
Q1

74∗ 78∗
Q2

81∗ 85∗ 90∗ 95∗

Figure 5.4: Insertion of key 70 – Step 2

Deletion. Key deletion is slightly more complicated. If a key from a non-leaf node
is deleted, it will be replaced by the next following key, which is in a leaf node, and
therefore the effect of a key deletion is always on a leaf. Furthermore, after a deletion
if the leaf node p has less than dm/2e−1 keys, it has to be regrouped with an adjacent
brother node in order to respect the definition of B–tree, using one of the following
techniques: merging or rotation.

The node p is merged with one of its adjacent brother nodes which contains dm/2e−1
keys operating in a way that is exactly the inverse to the process of division.

Merging is illustrated by Figure 5.4. If key 70 is deleted from node Q1, it becomes
underfull and it is merged with the brother to the right Q2. The key 71 separating the
two nodes in the ancestor Q is no longer necessary and it too is added to the single
remaining leaf Q1, so the tree will become that shown in Figure 5.3.

The elimination of 71 fromQ can cause a further underflow by requiring the merg-
ing of Q with one of its adjacent brothers. In such a case, the process is applied
recursively and terminates upon encountering a node that does not need be merged
or if the root node is used. If the root node contains a single key, as a result of the
merging, it becomes empty, and is removed. The result is that the B–tree shrinks
from the top. Thus the deletion process reverses the effects of the insertion process.

When the merging of the node p with one of its adjacent brothers is not possible, then
the rotation technique is applied.

Rotation is illustrated by Figure 5.5a. If key 70 is deleted from Q2, it becomes
underfull and a rotation is performed to borrow the maximum key 65 from the brother
to the left Q1. The key 65 is moved in the ancestor node Q and replace the key 66
which is moved inQ2 as the new smallest key value. The tree will become that shown
in Figure 5.5b.

Data Loading. The initial B–tree structure depends on the order in which the
keys are loaded. For example, the B–tree in Figure 5.2 is the result of loading the
keys in the following order:
10, 15, 30, 27, 35, 40, 45, 37, 20, 50, 55, 46, 71, 66, 74, 85, 90, 79, 78, 95, 25, 81,
68, 60, 65.
If the keys to load are sorted, the result is a B–tree with the leaves filled at 50%,
except the last one, as shown in Figure 5.6 for the keys:
50, 55, 66, 68, 70, 71, 72, 73, 79, 81, 85, 90, 95.
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66∗ 71∗ 79∗
Q

50∗ 55∗ 60∗ 65∗
Q1

68∗ 70∗
Q2

72∗ 73∗ 74∗ 78∗ 81∗ 85∗ 90∗ 95∗

(a)

65∗ 71∗ 79∗
Q

50∗ 55∗ 60∗
Q1

66∗ 68∗
Q2

72∗ 73∗ 74∗ 78∗ 81∗ 85∗ 90∗ 95∗

(b)

Figure 5.5: A rotation example

66∗ 71∗ 79∗

50∗ 55∗ 68∗ 70∗ 72∗ 73∗ 81∗ 85∗ 90∗ 95∗

Figure 5.6: The resulting B–tree from loading a sorted set of keys

One way to improve memory usage is to load the keys sorted, and to use the rotation
technique: instead of splitting a full node different from the first, the rotation tech-
nique is applied with the brother node to the left until it does not fill completely. For
the keys of the previous example, the tree in Figure 5.7 is obtained.

70∗ 81∗

50∗ 55∗ 66∗ 68∗ 71∗ 72∗ 73∗ 79∗ 85∗ 90∗ 95∗

Figure 5.7: The resulting B–tree from loading a sorted set of keys with the
rotation technique

5.3 Performance Evaluation

Let us evaluate the costs of the operations expressed in terms of the number of nodes
to read and write, assuming that the memory buffer can hold h+ 1 nodes: In this way
the nodes involved in the individual operations are transferred into the buffer only
once.
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B–tree Height. As with any tree, the cost of operations depend on the height of
the tree. The following theorem establishes the important relation between N , m and
the height of a B–tree:

� Theorem 5.1
In a B–tree of order m, with height h and with N ≥ 1 keys, the following
relation holds

logm(N + 1) ≤ h ≤ 1 + logdm/2e

(
N + 1

2

)
Proof

AB–tree of ordermwith height h, has the minimum (bmin) or the maximum
(bmax) number of nodes when they are filled with the minimum or maximum
number of keys:

bmin = 1 + 2 + 2dm/2e+ 2dm/2e2 + · · ·+ 2dm/2eh−2

= 1 + 2
dm/2eh−1 − 1

dm/2e − 1

bmax = 1 +m+m2 + · · ·+mh−1

=
mh − 1

m− 1

The minimum (Nmin) and the maximum (Nmax) number of keys that can
appear in a structure of order m with height h are:

Nmin = root + (min number of keys per node)× (bmin − 1)

= 1 + (dm/2e − 1)× (bmin − 1)

= 2dm/2eh−1 − 1

Nmax = (max number of keys per node)× bmax

= (m− 1)× bmax

= mh − 1

Therefore the following relation holds:

2dm/2eh−1 − 1 ≤ N ≤ mh − 1

and passing to logarithms, the thesis follows. �

Table 5.1 shows the minimum and maximum height of a B–tree with the specified
values of N and m, assuming records of 100 bytes and pointers of 4 bytes. Note as
with large pages the height is low also for large sets of records.
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Table 5.1: Minimum (hmin) and maximum (hmax) height of a B–tree, by the
size of the pages (Dpag)

N

1000 10 000 100 000 1 000 000
Dpag m hmin hmax hmin hmax hmin hmax hmin hmax

512 5 4.3 6.7 5.7 8.8 7.2 10.8 8.6 12.9
1024 10 3.0 4.9 4.0 6.3 5.0 7.7 6.0 9.2
2048 20 2.3 3.7 3.1 4.7 3.8 5.7 4.6 6.7
4096 40 1.9 3.1 2.5 3.8 3.1 4.6 3.7 5.4

Memory Requirements. Let us assume that each node is 70% full on an average.
The number of nodes b of a B–tree of order m to store N keys is

b = (m′h − 1)/(m′ − 1) = N/(m′ − 1)

where m′ = 0.7m and h = logm′(N + 1).

Equality Search. The cost of a search is 1 ≤ Cs ≤ h reads.

Range Search. B–trees are very good for equality searches, but not to retrieve
data sequentially or for range searches, because they require multiple tree traversals.
This is the reason why a variation of this tree structure is usually used. Let us consider
the tree in Figure 5.8. To retrieve all records with the keys in increasing order, the tree
is visited in the in-order (symmetric) traversal and so the nodes are visited as follows:
1, 2, 4, to find the deepest node to the left with the minimum key, and then upward
and downward for the sequential search, 2, 5, 2, 6, 1, 3, 7, 3, 8, 3, 9, 1.

46∗
1

27∗ 37∗
2

66∗ 79∗
3

10∗ 15∗ 20∗ 25∗
4

30∗ 35∗
5

40∗ 45∗
6

50∗ 55∗ 60∗ 65∗
7

68∗ 71∗ 74∗ 78∗
8

81∗ 85∗ 90∗ 95∗
9

Figure 5.8: Example of a B–tree with m = 5

Insertion. An insertion is made in a leaf node. If the node is not full, the new key
is inserted keeping the node’s keys sorted. The cost is h reads and 1 write.

The worst case is when the node and all its parent must be split. The cost is h reads
and 2h+ 1 writes.

Deletion. The cost of the operation is estimated by considering three cases.

1. If the key is in a leaf, and the merging and rotation operations are not required, the
cost is h reads and 1 write.
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2. If the key is in a node, and the merging and rotation operations are not required,
the cost is h reads and 2 writes.

3. The worst case is when for all the nodes of the path from the root to the node,
except for the first two, the merging operation is required, and for the child of the
root a rotation operation is required. The cost is 2h− 1 reads and h+ 1 writes.

5.4 B+–trees

AB+–tree is a well knownB–tree variant to enhance search performance especially
for range queries. In a B+–tree all the records, denoted as k∗, are stored sorted in
the leaf nodes, organized into a doubly linked list. Only the set of the highest keys,
denoted as k, in each leaf node, except the last one, is stored in the non-leaf nodes,
organized as a B–tree (Figure 5.9).

45

25 35 65 78

10∗ 15∗ 20∗ 25∗ 30∗ 35∗ 40∗ 45∗ 50∗ 55∗ 60∗ 65∗ 68∗ 71∗ 74∗ 78∗ 81∗ 85∗ 90∗ 95∗

Figure 5.9: A B+–tree

This organization is also called index-organized file, index sequential file or clustered
indexed file to emphasize that the records are stored in the leaves, like a sequential
organization, and the set of the other nodes of the B+–tree are like a sparse index
with an entry for the highest key of the records in each leaf. In the following, we will
call it index sequential organization.

Note that records are part of the tree structure stored in one file, therefore, to read
all records in sorted order, the tree structure must be used to locate the first data page.
Moreover, since the organization is a primary one, there can be at most one index
sequential organization for a table.

A B+–tree, also called B–tree in some textbooks, is different from a B–tree for
the following reason:

1. A key search requires always the same number of accesses equal to the B+–tree
height.

2. A B+–tree is usually shallower than a B–tree with the same data, and so a key
search is faster, because the records are stored in the leaf nodes, and only the keys
are stored in the non-leaf nodes of the tree.
Moreover, since all records are in the leaf nodes, a sequential scan of data or a
range key search are faster.

3. When a leaf node F is split into F1 and F2, a copy of the highest key in F1 is
inserted in the father node of F , while when an internal node I is split the median
key in I is moved in the father node, as in a B–tree.

4. When a record with the key ki is deleted, the ki∗ is deleted in the leaf F , and if
ki is used in a father node because it was the highest key in F , it is not necessary
to replace it with the new highest key in F . Only when the deletion of a record
causes the number of the records in F to fall below the minimum, it is necessary
to reorganize the tree.
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Index sequential organization in DBMSs. In INGRES a table R is
stored initially with a heap organization, and then it is possible to select an in-
dex sequential organization, static (ISAM) or dynamic (BTREE), with the com-
mand:

MODIFY R TO (ISAM | BTREE) UNIQUE ON Attr{, Attr};

In Oracle the index sequential organization, called IOT (index organized table),
is used when a table with a primary key is created with the clause ORGANIZED
INDEX:

CREATE TABLE R(Pk Type PRIMARY KEY, . . . ) ORGANIZED INDEX;

In SQL Server the index sequential organization is used when a CLUSTERED
INDEX is defined on the primary key of a table.

CREATE TABLE R(Pk Type PRIMARY KEY, . . . ) ;
CREATE CLUSTERED INDEX Rclust ON R(Pk);

The index sequential organization is one of the oldest types of organizations used
in file and database systems. This organization was called Virtual Storage Access
Method (VSAM) when it was adopted for IBM file systems, and is called with dif-
ferent names in commercial DBMSs (see the box).

Static Tree-Structure Organization

AB+–tree organization can be used to implement a static index structure rather than
a dynamic one. The tree structure is fixed at loading time, and insertions into full leaf
nodes are treated as page overflows of a static hashing organization. This solution is
simple to implement, but has the usual inconveniences of a static organization.

This organization was called Index Sequential Access Method (ISAM), and it was
used initially for IBM file systems, and by some DBMSs such as Ingres.

5.5 Index Organization

To support fast retrieval of records in a table using different keys, two types of indexes
can be used, in accordance with the table organization:

1. If the table is stored with a heap organization, an index is defined for each key,
and the elements of the indexes are pairs (ki, ridi), where ki is a key value for a
record, and ridi is the record identifier.

Some database systems also permit one of the indexes on a relation to be declared
to be clustered. In DB2 this type of index is created with the command
CREATE INDEX Name ON Table(Attributes) CLUSTER (Figure 5.10).
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Data Pages

Index

(a) Clustered index (b) Unclustered index

Figure 5.10: Types of indexes

� Definition 5.3 DB2 Clustered Index

A clustered index on a keyK of a table is created by first sorting the table on
the values of the index key K. If new records are inserted into the table after
the clustered index is created, the efficiency of the index decreases because
the table records are no longer in the physical order of the index key. In order
to overcome this problem, when a clustered index is created it is possible
to specify that a small fraction of each data page is left empty for future
insertions, and then the clustered index should be recreated from time to
time.

A clustered index is particularly useful for a range key search because it requires
fewer page accesses, as it will be shown in the following section.
Note that the term clustered index is used with different meanings, i.e. index se-
quential primary organization, as in SQL Server, or clustered index secondary
organization, as in DB2.

2. If the table is stored with a dynamic primary organization using the “primary key”,
indexes are defined for the other keys, and the element of the indexes are pairs
(ki, pki), where ki is a key value for a record, and pki is the primary key value of
the corresponding record. If the primary organization is static, the elements of the
indexes are pairs (ki, ridi), as in the previous case.

Since an index can be viewed as a table, if it is large, it is stored usually using a
B+–tree primary organization.

5.5.1 Range Search

An index is useful for a range search if the interval is not too large, otherwise it
is better to proceed with a scan of the data pages to find records that satisfy the
condition, as shown by the following analysis.

Unclustered Index. Let R be a table with key K and Nrec(R) records, stored in
Npag(R) pages, and Nleaf(Idx) be the number of leaves of an unclustered B+–tree
index Idx on K

The selectivity factor sf of the condition (ψ = v1 ≤ k ≤ v2) is an estimate of the
fraction of records which will satisfy the condition. With numerical keys and uniform
distribution of the values, sf (ψ) is estimated as
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sf (ψ) =
v2 − v1

kmax − kmin

To find a record R using the index, first the RID of the record matching the condition
is retrieved from a leaf of the index, and then the record of R is retrieved with one
access. Let us assume that the cost of an index access is estimated with the number
of leaves to visit dsf (ψ) × Nleaf(Idx))e, and the number of RID of the records that
satisfy the condition is

Erec = dsf (ψ)×Nrec(R)e

Since the records are not sorted on the index key values, the number of pages to read
is Erec, and therefore the search cost using the index is

Cs = dsf (ψ)×Nleaf(Idx)e+dsf (ψ)×Nrec(R)e = dsf (ψ)×(Nleaf(Idx)+Nrec(R))e

The search of the records with a table scan has the cost Npag(R), therefore the index
is useful if

dsf (ψ)× (Nleaf(Idx) +Nrec(R))e < Npag(R)

Example 5.2
Let R be a table with key K and 500 000 records, stored in Npag(R) = 60 113
pages. Let us estimate for which value of sf (ψ) an unclustered B+–tree index
on K, with Nleaf(Idx) = 6012, is useful to retrieve the records with the keys
within a certain range:

dsf (ψ)× (6012 + 500 000)e < 60 113

the inequality holds for sf < 0.12, that is for very selective conditions.
In this case the use of the index has also the advantage of returning the records

sorted according to the key, while to obtain the same result with a table scan the
cost of sorting Erec records should also be taken into account.

Clustered Index. The records are always retrieved using the index since, al-
though it has been constructed from sorted records, in the case of subsequent in-
sertions it is not certain that the records are still sorted (i.e. the records are almost
sorted). Therefore, the cost of a search is estimated as the sum of the cost of access-
ing the leaves of the index, ignoring the height of the index, and the cost of accessing
the data pages.

When the records are sorted on the values of the key, the clustered index is almost
always convenient. In fact, the number of data pages to visit to find Erec records is
estimated as

dfs(ψ)×Npag(R)e

and the overall cost of the search with the use of the index becomes

Cs = dfs(ψ)× (Nleaf(Idx) +Npag(R))e

For the search operation the index is advantageous with respect to a table scan if
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dfs(ψ)× (Nleaf(Idx) +Npag(R))e < Npag(R)

With the data of the previous example, the index is advantageous when fs(ψ) < 0.9,
that is also with non-selective conditions.

Indexes with Variable Length Keys

If the keys have string values with a very variable length, and such as to prohibit the
reduction to the case of fixed length equal to the maximum possible, there are several
possible solutions to reduce the space occupied by the keys and then increase the
number of node’s children in the non-leaf nodes of a B+–tree.

The idea is to reduce the key length in the non-leaf nodes by truncating the keys to
the fewest number of characters needed to distinguish them from each other. Example
of solutions are the prefix B+–tree, trie, and the String B–tree. Interested readers
may refer to the bibliographic notes at the end of this chapter for specific proposals.

5.6 Summary

1. The B–tree is a fundamental search tree, perfectly balanced, for storing a set of
records in the permanent memory that must be accessed both sequentially and
directly for range key search. It has been described as ubiquitous because of its
utility.
What does theB stand for? The tree name has never been explained. Certainly, the
B does not stand for binary. The B could stand for balanced, for the Bayer name
of the first author, or for the name Boeing Corporation, for which the authors were
working at the time.

2. The B+–tree, a variant of the B–tree which stores all the records in the leaves
and constructs a B–tree on the maximum key of each leaf, is the most widely
used structure in relational DBMSs for both the primary organization of tables
(index sequential organization) and index secondary organization.

Bibliographic Notes

Tree organizations for tables of records or indexes are treated in every book cited in
the bibliographic notes of Chapter 1.

Bayer and McCreight present the B–tree in [Bayer and Creight, 1972] and in
[Comer, 1979; Chu and Knott, 1989] is made a review of many variations of this
data structure. A detailed analysis of the performance of B–trees and derivates is
given in [Chu and Knott, 1989; Rosenberg and Snyder, 1981].

The String B–tree has been proposed in [Ferragina and Grossi, 1995, 1999], and
its experimental analysis has been presented in [Ferragina and Grossi, 1996], together
with comparisons with alternative structures.

Exercises

Exercise 5.1 The CREATE TABLE statement of a relational system creates a heap-
organized table by default, but provides the DBA the following command to trans-
form a heap organization into a tree-structure organization:

MODIFY Table TO ISAM ON Attribute;
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The manual contains the following warning: “Do not modify a table’s structure from
its default heap structure to a keyed (i.e. ISAM) structure until the table contains
most, if not all, of its data, . . . , (otherwise) query processing performance degrade
upon adding extra data”. Explain what determines the performance degradation.

Exercise 5.2 Answer the following questions about index and tree organizations:

– What is the difference between an index secondary organization and index sequen-
tial organization?

– What is the difference between a clustered index and an unclustered index? If an
index contains data records as ‘data entries’ can it be unclustered?

Exercise 5.3 Show the result of entering the records with keys in the order (1, 2,
3, 4, 5) to an initially empty B+–tree of order m = 3. In case of overflow, split the
node and do not re-distribute keys to neighbors. Is it possible to enter the records with
keys in a different order to have a tree of less height?

Exercise 5.4 Show how the following B+–tree changes after the insertion of the
record with key 25.

10 40

30* 40*10* 50*

Exercise 5.5 Consider a DBMS with the following characteristics: a) file pages
with size 2048 bytes, b) pointers of 12 bytes, c) the page header of 56 bytes. A
secondary index is defined on a key of 8 bytes. Compute the maximum number of
records that can be indexed with

1. A three levels B–tree.
2. A three levels B+–tree. For simplicity, assume that the leaf nodes are organized

into a singly linked list.

Exercise 5.6 Consider a secondary index on a primary key of a table with N
records. The index is stored with a B+–tree of order m. What is the minimum num-
ber of nodes to visit to search a record with a given key value?

Exercise 5.7 Discuss the advantages and disadvantages of a B–tree and a static
hashing primary organizations.

Exercise 5.8 Let R(K,A,B, other) be a relation with Nrec(R) = 100 000, Lr =
100 bytes, a keyK with integer values in the range (1, 100 000) andLK = 4. Suppose
R stored with heap organization in pages with size Dpag = 1024 bytes and a loading
factor fr = 0, 8, and an index exists on the key K stored as B+–tree,

Estimate the cost of the following SQL queries, assuming that there are always
records that satisfy the WHERE condition.

1. SELECT ∗
FROM R;
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2. SELECT ∗
FROM R
WHERE K = 50;

3. SELECT ∗
FROM R
WHERE K BETWEEN 50 AND 100;

4. SELECT ∗
FROM R
WHERE K BETWEEN 50 AND 100
ORDER BY K;

Exercise 5.9 Let R(A,B,C,D,E) be a relation with key A, Npag(R) = 10 000,
Nrec(R) = 100 000 and Dpag = 500 bytes. The values of all attributes are strings
with length 10 bytes. Consider the query

SELECT A, B
FROM R
ORDER BY A;

1. Estimate the query execution cost without indexes.
2. Estimate the query execution cost with a clustered index on A stored as B+–tree

with Nleaf = 3500.



Chapter 6

NON-KEY ATTRIBUTE
ORGANIZATIONS

The previous two chapters have described organizations to retrieve records of a table
with a specified key value in as few accesses as possible. Other important organiza-
tions are the ones to retrieve records of a table that satisfy a query which involves non-
key attributes, i.e. attributes that do not uniquely identify a record. Non-key attributes
are also called secondary keys by some authors, but the term is not standard and other
authors use it with a different meaning. In the following, for the sake of brevity, some-
times we will just call them attributes when the context does not create ambiguity. In
this chapter, after a definition of the problem and the type of queries considered, the
main organizations will be presented to speed up the search for records in a table that
satisfy a condition on one or more non-key attributes.

6.1 Non-Key Attribute Search

The records to retrieve are specified with search conditions of the following types:

1. An equality search, which specifies a value v for an attribute Ai (Ai = vi).
2. A range search, which specifies a range of values for an attribute Ai (v1 ≤ Ai ≤
v2).

3. A boolean search, which consists of the previous search types combined with the
operators AND, OR and NOT.

These three types of searches do not exhaust all the possibilities, but they are suffi-
cient to show how queries can be very complex and require data organizations differ-
ent from those seen so far to generate the answer quickly. In this chapter, we will only
consider the fundamental solutions for searches of type (1) and (2), or for those of
type (3) with conjunctions of simple conditions. The general case will be considered
in Chapter 11.

With a primary organization, queries on non-key attributes can only be answered
with a scan of the data. With large collections of records and queries satisfied by
small subsets (as a general guideline, less than 15% of the records), if the response
time is an important requirement, this approach is not worthwhile and the cost and
management of an index that makes it possible to speed up the search of the records
that match the query is justified. Figure 6.1 shows an index on the attribute Quantitiy
of Sales, assuming for simplicity that the RIDs are integers.
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Sales
RID Date Product City Quantity

1 20090102 P1 Lucca 2
2 20090102 P2 Carrara 8
3 20090103 P3 Firenze 5
4 20090103 P1 Arezzo 10
5 20090103 P1 Pisa 1
6 20090103 P4 Pisa 8
7 20090103 P2 Massa 5
8 20090104 P2 Massa 2
9 20090105 P4 Massa 2

10 20090103 P4 Livorno 5

Index
Quantity RID

1 5
2 1
2 8
2 9
5 3
5 7
5 10
8 2
8 6

10 4

Figure 6.1: An index on Quantity

Indexes are non-exclusive. Therefore they can be created for any non-key attributes,
regardless of the primary organization used to store the table records. An index can
be defined also on multiple attributes (multi-attribute or composite index).

An excessive number of indexes can be harmful to the overall performance. The
attributes to be indexed must be selected carefully, and this problem has been exten-
sively studied by a number of researchers.

A typical implementation of an index is the inverted index organization described
in the next section.

6.2 Inverted Indexes

� Definition 6.1

An inverted index I on a non-key attribute K of a table R is a sorted collec-
tion of entries of the form (ki, n, p1, p2, . . . , pn), where each value ki of K
is followed by the number of records n containing that value and the sorted
RID list of these records (rid-list).

Figure 6.2 shows an inverted index on the attribute Quantitiy of Sales.

Sales
RID Date Product City Quantity

1 20090102 P1 Lucca 2
2 20090102 P2 Carrara 8
3 20090103 P3 Firenze 5
4 20090103 P1 Arezzo 10
5 20090103 P1 Pisa 1
6 20090103 P4 Pisa 8
7 20090103 P2 Massa 5
8 20090104 P2 Massa 2
9 20090105 P4 Massa 2

10 20090103 P4 Livorno 5

Inverted index
Quantity n RID list

1 1 5
2 3 1, 8, 9
5 3 3, 7, 10
8 2 2, 6

10 1 4

Figure 6.2: An inverted index on Quantity

Although an inverted index requires elements of variable length and, in the case of
record updates, a management of the sorted rid-lists, it has a wide use for the follow-
ing reasons:
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– The data file is accessed only to find the records that match the query.
– The result of queries such as “how many records have the index key that satisfy

a condition?”, or “search the index key values of a set of records that satisfy a
condition?”, can be found using the index only.

– It allows complete independence of the index organization from the strategy used
for data storage. Therefore, the data must not be reorganized at any addition or
deletion of an inverted index.

6.2.1 Performance Evaluation

The performance is evaluated in terms of:

– The amount of extra memory needed, not counting the memory needed to store the
data file.

– Cost of the search for records with specified values for the indexed attributes, and
of the update operations.

The costs will be expressed as a function of the following parameters stored in the
database system catalog:

Nrec(R) the number of records of R.
Npag(R) the number of pages occupied by R.
LR the number of bytes to represent the value of Nrec(R).
NI(R) the number of indexes on R.
LI the average number of bytes to represent a key value of the index I .
Nkey(I) the number of distinct keys in the index I .
Nleaf(I) the number of leaf nodes in the index I .
LRID the number of bytes to represent the RID of a record.

Memory Requirements. For simplicity, let us assume that the organization of
the indexes, which contain elements of variable length, does not require more mem-
ory than strictly necessary.

M = Index memory

=

NI(R)∑
i=1

Nkey(Ii)(LIi + LR) +NI(R)×Nrec(R)× LRID

≈ NI(R)×Nrec(R)× LRID

The memory required by an inverted index is therefore mainly due to the RIDs stored
in the index.

Equality Search. The operation cost can be estimated easily under the following
simplifying assumptions:

– The values of an attribute are uniformly distributed across its active domain, and
the attributes are considered independent.

– The records are uniformly distributed in the pages of R.
– An index is stored in a B+–tree with the sorted rid-lists in the leaf nodes.
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The operation cost is:

Cs = CI + CD

where CI is the cost of accessing the index pages to find the RIDs of the records that
satisfy the condition, while CD is the cost of accessing the data pages containing the
records. The cost CI is usually approximated to the cost of accessing the leaf nodes,
ignoring the cost of the visit of the path from the root to a leaf node:

CI = dsf (ψ)×Nleaf(I)e =

⌈
Nleaf(I)

Nkey(I)

⌉
Let us consider two cases for CD, depending on whether the data is sorted or not on
the index key.

If the index is unclustered, it is necessary to have an estimate of the number of
records Erec satisfying the query condition. For a simple condition (Ai = vi), Erec is
equal to the average length of a rid-list estimated as:

Erec =

⌈
Nrec(R)

Nkey(I)

⌉
The following formula is used to estimate CD:

CD = Φ(Erec, Npag(R))

where the function Φ(k, n) is an estimate of the number of pages, in a file of n pages,
that contain at least one of the k records to be retrieved using a sorted rid-list.

An approximate evaluation of the function Φ(k, n), usually used in the literature,
has been proposed by Cardenas, by assuming pages to have infinite capacity [Carde-
nas, 1975]:

Φ(k : int, n : int) : int =

⌈
n

(
1−

(
1− 1

n

)k)⌉
The formula is justified by the following considerations:

1/n is the probability that a page contains one of the k records.
(1− 1/n) is the probability that a page does not contain one of the k

records.
(1− 1/n)k is the probability that a page does not contain any of the k

records.
(1− (1− 1/n)k) is the probability that a page contains at least one of the k

records.
n(1− (1− 1/n)k) is an estimate of the number of pages that contain at least

one of the k records.

A page that contains more than one of the k records to retrieve is read only once
because the rid-list is sorted, so n(1− (1− 1/n)k) is also an estimate of the number
page accesses.

The function is approximately linear in k when k � n, while it is close to n for k
large and, therefore, Φ(k, n) ≤ min(k, n), so the number of pages accesses is always
less than n. The shape of the function Φ, for a fixed n = 100, is shown in Figure 6.3.

The Cardenas’ formula has the advantage of a low evaluation cost but appreciably
underestimates the cost of Φ in the case of pages with c < 10, and has been revised
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Φ(k, n)
min(k, n)

k

n

Figure 6.3: Shape of the function Φ

by several researchers. For c ≥ 10, the error involved in the Cardenas’ approximation
is practically negligible.
The data access cost CD in the case of a clustered index, assuming to retrieve the
records using a sorted rid-list, is estimated as:

CD =

⌈
1

Nkey(I)
×Npag(R)

⌉

Range Search. Let us assume that to retrieve the records that satisfy the condition
v1 ≤ Ai ≤ v2, an equality search operation is performed for each Ai value in the
range. The cost is:

Cs = CI + CD

The cost of accessing the index is due to the visit of the leaves that contain the rid-
lists, and it is estimated as:

CI = dsf (ψ)×Nleaf(I)e

where sf (ψ) = (v2 − v1)/(max(Ai) − min(Ai)) is the selectivity factor of the
condition v1 ≤ Ai ≤ v2.

The number of data page accesses CD is estimated as:

CD = NoIndexKeyValues × NoPageAccessesForRidList

where NoIndexKeyValues = dsf (ψ) × Nkey(I)e, while NoPageAccessesForRidList
depends on the fact that data are sorted or not on the index key.

If the index is unclustered

CD = dsf (ψ)×Nkey(I)e × Φ(dNrec(R)/Nkey(I)e, Npag(R))

where dNrec(R)/Nkey(I)e is the average length of the rid-lists.
If the index is clustered

CD = dsf (ψ)×Nkey(I)e ×
⌈

1

Nkey(I)
×Npag(R)

⌉
= dsf (ψ)×Npag(R)e

Multi-attribute Search. Let us assume that an index exists on each each attribute
used in k simple conditions of a conjunction. The cost of accessing the index to find
the rid-list of the records that satisfy the conjunctive condition is estimated as
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When to create an index An index allows the DBMS to locate a small
subset of records in a table more quickly and thereby speeds up response to
user queries, but requires memory and increases the cost of updating the at-
tributes on which it is defined. The general problem of choosing the indexes
for a database is complex and the reader may refer to the bibliographic notes
for specific proposals. In the simplest case the choice of indexes can be made
by keeping in mind the following guidelines that are usually found in the man-
uals of commercial systems:
– Define indexes on attributes with Nkey high and frequently used to retrieve

less than 15% of the records.
– Define indexes on foreign keys to facilitate the implementation of join op-

erations.
– Define more than four indexes for a relation only if the updating operations

are rare.

In commercial systems an index is automatically created to enforce a primary
key constraint.

CI =
k∑
j=1

dsf (ψj)×Nleaf(Ij)e

where sf (Ai = vi) = 1/Nkey(Ii).
The number of records Erec that satisfy the conjunctive condition is estimated as:

Erec =

Nrec(R)
k∏
j=1

sf (ψj)


and therefore the number of page accesses is

CD = Φ(Erec, Npag(R))

Insertion and Deletion. TheNI(R) indexes on a tableRmust be updated when-
ever a record is either inserted into or deleted from R. The operation requires NI(R)
reads and writes of the inverted indexes to update the rid-lists.

6.3 Bitmap indexes

A bitmap is an alternative method of representing a rid-list of an index. Each index
element has a bit vector instead of a rid-list.

� Definition 6.2
A bitmap index I on a non-key attribute K of a table R, with N records, is a
sorted collection of entries of the form (ki, B), where each values ki of K is
followed by a sequence of N bits, where the jth bit is set to 1 if the record
jth has the value ki for the attribute K. All other bits of the bitmap B are set
to 0.
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Sales
RID . . . Quantity

1 . . . 2
2 . . . 8
3 . . . 5
4 . . . 10
5 . . . 1
6 . . . 8
7 . . . 5
8 . . . 2
9 . . . 2

10 . . . 5

Bitmap index
1 2 5 8 10

0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0

Figure 6.4: A bitmap index on Quantity

Figure 6.4 shows the bitmap index for the example of Figure 6.2.

Using bitmaps might seem a huge waste of space, however bitmaps are easily com-
pressed, so this is not a major issue. With efficient hardware support for bitmap op-
erations (AND, OR, XOR, NOT), a bitmap index is better suited to answer queries
such as “how many sales of product P1 have been made in Pisa”, since the answer is
found by counting the 1’s of one bit-wise AND of two bitmaps.

Example 6.1
It is interesting to compare the memory occupied by an inverted index and a
bitmap index defined on the same attribute, stored with B+–tree, considering
only the memory for the leaves, supposed completely full.
The number of leaves of an inverted index is:

Nleaf = (Nkey × Lk +Nrec × LRID)/Dpag ≈ (Nrec × LRID)/Dpag

The number of leaves of a bitmap index is:

Nleaf = (Nkey × Lk +Nkey ×Nrec/8)/Dpag ≈ Nkey ×Nrec/(Dpag × 8)

where Dpag is the leaves page size in bytes, Lk is a value attribute size in bytes
and LRID is the RID size in bytes.

For the approximations made, the number of leaves of a B+–tree index does
not depend on Nkey, while the number of leaves of a bitmap index increases
linearly with Nkey.
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N leaf

The two values are equal forNkey = 8×LRID (for LRID = 4 bytes,Nkey = 32),
for lower values theB+–tree index takes more memory, while for higher values
a bitmap index takes more memory.

An interesting aspect is that although the binary vectors are generally very
long, and with very selective attributes (high values of Nkey)) become scat-
tered, i.e. a large number of bits will be zero, they can be easily stored in a
compressed form to reduce the memory requirements. For example, the Oracle
system, which uses such techniques, suggests using them if Nkey < Nrec/2.

The bitmap indexes are used when the data is never updated, as happens with decision
support databases (Data Warehouse), because when data change, the operations of
modifying the index become complex, particularly when they are compressed.

Index creation in DB2 and Oracle. The following command creates an
inverted or bitmap index on a relation R, stored with a heap organization:
CREATE [ UNIQUE | BITMAP ] INDEX Name ON R
(Attr [ASC | DESC] {, Attr [ASC | DESC]})

The command also provides the possibility of specifying that the values of
the index attributes are unique, that a free space must be left in the index
nodes (PCTFREE), that the nodes have a certain minimum percentage of fill-
ing (MINPCUSED), that the leaves of the index are linked by a bidirectional list
(ALLOW REVERSE SCANS in DB2 only), and finally that in the index must
be stored the values of both the key attribute and those of other attributes
(INCLUDE, in DB2 only), to allow the optimizer to generate more query plans
that use indexes only, as we will see later.

An index can be specified as clustered (e.g., CLUSTER in DB2).The records of
the table on which the index is defined are sorted only at index creation time,
but not after overflows from data pages. The command REORGANIZE is used
to reorganize the clustered index.
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6.4 Multi-attribute Index

Let us see how to use inverted indexes to speed up the search of records that satisfy
a conjunction of equality or range conditions on a subset of k attributes A1, A2, . . . ,
Ak. A more general solutions will be presented in the next chapter.

A query with a condition that uses all the k attributes is called exact match query,
otherwise is called partial match query.

Let R(A1, A2, A3) be a relation with Nrec(R) records. The attributes A1, A2, A3

have n1, n2 and n3 distinct values.
Three inverted indexes on each attribute have (n1+n2+n3) elements, and the total

number of RIDs is 3×Nrec(R). To find an exact match query result three rid-lists have
to be intersected.

An alternative solution to speed up the search consists in building a multi-attribute
(composite) index on A1, A2, A3, with (n1 × n2 × n3) elements, one for each com-
bination of the values of the attributes Ai, with the rid-lists of the records that have
those three values in the three attributes. The total number of RIDs is now Nrec(R).
This solution is sufficient to find the rid-lists of records that satisfy an exact match
query.

For a partial match query, this type of index cannot be always used, as in the case
of a condition that uses one attribute different from A1, or both the attributes A2, A3.
If, instead, the query uses only the first two attributes A1, A2, the index can be used
by making the union of n3 disjoint lists, associated with consecutive elements of the
index, which becomes (n3 × n2) if the query uses only A1.

To ensure the property that for all queries that use any combination of the three
attributes A1, A2, A3 it is sufficient to merge the rid-lists of consecutive elements,
then indexes are needed for the three combinations

(A1A2A3), (A2A3A1), (A3A1A2)

Similarly, for four attributes A1, A2, A3, A4 the indexes are needed for the following
six combinations

(A1A2A3A4), (A2A3A4A1), (A3A4A1A2), (A4A1A2A3), (A2A4A1A3), (A3A1A4A2)

In general, for n attributes and t = dn/2e, to ensure that for any combination of
i attributes, with 1 ≤ i ≤ n, an index exists to execute the query, their number is(
n
t

)
[Knuth, 1973].

6.5 Summary

1. An index is the standard data structure used by all DBMSs to speed up the search
for records in a table that satisfy a condition on one or more non-key attributes.

2. An index can be added or removed without any effects on the organization of the
relations.

3. An index can be implemented as an inverted or bitmap index.

Bibliographic Notes

Index organizations are presented in every book cited in the bibliographic notes of
Chapter 1.
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Algorithms to choose indexes for a relational database have been proposed by many
authors. For an introduction to the problem see [Albano, 1992] and for specific pro-
posals see [Finkelstein et al., 1988; Chaudhuri and Narasayya, 1997].

Exercises

Exercise 6.1 To speed up the search for records in a table with an equality predicate
on a non-key attribute A, and selectivity factor fs, is preferable:

1. A sequential organization on a key attribute.
2. A static hash organization on a key attribute.
3. An inverted index on A.

Briefly justify the answer and give an estimate of query execution cost in all three
cases.

Exercise 6.2 Consider a relation R with Nrec records stored in Npag of a heap file,
and an inverted index on the attribute A with Nkey integer values in the range Amin
andAmax. Show two different execution plans to evaluate a non-key range query with
condition k1 ≤ A ≤ k2, and their estimated cost. Explain in which case one is better
than the other.

Exercise 6.3 Consider the relation R(A,B,C,D,E) with the key A, and each at-
tribute a string 10 characters long. Assume that Npag(R) = 10 000, Nrec = 100 000
and Dpag = 500. Consider the following query:

SELECT A, B
FROM R
ORDER BY A;

a. Estimate the cost of a plan without the use of indexes.
b. Estimate the cost of a plan with the use of a clustered index on B stored with a
B+–tree with Nleaf = 2500.

c. Estimate the cost of a plan with the use of a clustered index on A stored with a
B+–tree with Nleaf = 2500.

d. Estimate the cost of a plan with the use of a clustered index on A,B stored with a
B+–tree with Nleaf = 5000.

Exercise 6.4 Which of the following SQL queries execution takes less advantage
from the presence of a multi-attribute index on R with A as the first attribute and B
as the second attribute?

1. SELECT ∗ FROM R WHERE A = 10;

2. SELECT ∗ FROM R WHERE B = 20;

3. SELECT ∗ FROM R WHERE A < B;

4. SELECT ∗ FROM R WHERE A < C;

5. SELECT ∗ FROM R WHERE C < 100 AND A = 10.

Exercise 6.5 Discuss the advantages and disadvantages of bitmap indexes.

Exercise 6.6 Consider a relation R with an unclustred index on the numerical non-
key attributeB. Explain whether to find all records withB > 50 is always less costly
to use the index.



Chapter 7

MULTIDIMENSIONAL DATA
ORGANIZATIONS

Multidimensional or spatial data is used to represent geometric objects and their po-
sition in a multidimensional space. Examples of systems that use this type of data are:
Geographical Information Systems (GIS), Computer Aided Design and Manufactur-
ing Systems (CAD/CAM) and Multimedia Database Systems. The organizations seen
in the previous chapters are not suitable for efficient handling of these types of data.
This chapter first describes typical kinds of multidimensional data commonly used in
practice, and then presents organization techniques supporting efficient evaluation of
basic queries.

7.1 Types of Data and Queries

Let us consider multidimensional data representing points or regions in a k-dimensional
space.

The data that represents points is encountered both in applications that deal with
geographic data objects and in applications where the information to be managed
can be interpreted as spatial points for the purpose of a search. For example, the
k attributes of the records of a relation can be interpreted as coordinates of a k-
dimensional space and a table of Nrec record as Nrec spatial points.

Example 7.1
Consider a set of 8 records with two attributes A1 and A2 of type integer, which
represent the latitude and longitude of cities, whose name will be used to denote
the corresponding record. It is assumed that the A1 and A2 values are normal-
ized in the range 0 to 100 (Figure 7.1).
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City A1 A2

C1 10 20
C2 80 30
C3 40 40
C4 10 85
C5 20 85
C6 40 80
C7 20 55
C8 20 65

Figure 7.1: Data on cities locations

A two-dimensional representation of these points, as shown in Figure 7.2, allows
a simple geometric interpretation of exact match queries.
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C2
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C7
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A1

A2

Figure 7.2: Multidimensional representation of data on cities

The problems that will be considered are (a) how to partition the space in regions
that contain records that can be stored in a page, (b) how to quickly find the region
containing the points in a specified rectangular area. Another interesting query is
that to find nearest neighbors, e.g. to find a point nearest to a given one, and specific
solutions have been developed. This topic is outside the scope of this book. Interested
readers may refer to the bibliographic notes at the end of this chapter for specific
proposals.

Let us see with an example how we can proceed to divide the data space into
non-overlapping partitions of variable size. The information on the partitions (points
present in them and their location) is then usually managed with trees of different
kinds in order to facilitate search operations.

Example 7.2
Suppose that pages have a capacity 2 and we want to load the data on cities.
After the insertion of “C1” and “C2”, the insertion of “C3” requires distribut-
ing the data into two pages. To proceed let us divide the data space into non-
overlapping partitions according to the first coordinate by choosing a value of
separation d for A1: points with coordinate A1 ≤ d are inserted into a page,
those with a higher value are inserted into another one. The separator d can be
half the range size (subdivision guided by the size of the range) or the median
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value of the coordinates of the points present in the region (subdivision guided
by the values of the attribute). Suppose we choose the first policy (Figure 7.3a).

When there is a new overflow from a page during data loading, we proceed
with another split of the partition, but changing the reference coordinate, with
the logic that the splitting dimension alternates, since there are only two dimen-
sions. In general with n dimensions, the splitting dimension cycles. Therefore,
after a partition splits along axis Ai then the next one will be along the axis
Ai+1, and when i = k,Ai+1 becomesA1 again. Figure 7.3b shows the situation
after the insertion of “C4”. Then “C5” is inserted, but when “C6” is inserted, a
new split is made along A1 (Figure 7.3c). Then “C7” is inserted, and a new split
is made along A2, and finally once “C8” is inserted we obtain the situation in
Figure 7.3d.

Later we will see examples of tree structures to manage the information on the
division of the data space into non-overlapping partitions.
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Figure 7.3: Division of the data space into non-overlapping partitions

Let us show with an example why multi-attribute indexes do not support queries on
multidimensional data very well.

Example 7.3
Let us consider a multi-attribute index on the data in Figure 7.2 and how the
points are stored in the leaf nodes of a B+–tree with capacity 2 (Figure 7.4).
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The dotted lines indicate the linear order in which points are stored in aB+–tree
and the boxes how points are stored in a multidimensional index.

Let us compare the behavior of the two solutions using the following queries:

1. A1 < 25: the B+–tree index performs very well. As we will see, the multi-
dimensional index handles such a query quite well too.

2. A2 < 25: the B+–tree index is of no use, while the multidimensional index
handles this query just as well as the previous query.

3. A1 < 25 ∧A2 < 25: both solutions perform well.
4. Nearest neighbor queries: the multidimensional index is ideal for this kind of

queries while B+–tree is not because it linearizes the 2-dimensional space
by sorting entries first by A1 and then by A2, and therefore in a page there
is no nearest neighbor points, as happens in the partitions of the multidimen-
sional index.

A1 A2 RID

10 20 . . .
10 85 . . .
20 55 . . .
20 65 . . .
20 85 . . .
40 40 . . .
40 80 . . .
80 30 . . .
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A2

25 50 75 100

25
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100
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A2

Figure 7.4: Clustering of a multi-attribute index entries in a B+–tree vs. mul-
tidimensional index

Starting from the seventies, many organizations for multidimensional data have been
proposed, most of them to deal with point data or rectangles. The attention to the
points data management is due to the fact that this kind of data is the basic one to deal
with. The rectangles instead are important because they are often used to approximate
other geometric shapes such as polygons and irregular shapes.

In the following we present two examples of organizations for multidimensional
data: G–trees for point data and B∗–tree for rectangle data.

7.2 G–trees

G–trees combine the ideas of data space partitioning and of B+–trees in an original
way: data space is divided into non-overlapping partitions of variable size identified
by an appropriate code, then a total ordering is defined for partition codes, and they
are stored in a B+–tree [Kumar, 1994]. In the following, for simplicity, we consider
only the two-dimensional case, and it is assumed that data pages may contain 2 points.
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A partition code is a binary string constructed as follows (partition tree, Fig-
ure 7.5b):

– The initial region is identified by the empty string.
– With the first split alongX-axis, the two partitions produced are identified with the

strings “0” and “1”. The points with 0 < x ≤ 50 belong to the partition “0” and
those with 50 < x ≤ 100 belong to the partition “1” (splitting by interval size).

– When a partition of the previous step is split along the Y -axis, the new partition
codes become “00” an “01”, an so on.

– In general, when a partition R with the code S is split, the subpartition with values
less than the half interval has the code S“0” and that with values greater has the
code S“1”.
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Figure 7.5: An example of partition coding and of a G–tree

Let us see some important properties of the partition coding:

– If a partition R has the code S, the code of the partition from which R has been
created with one split is S without the last bit.

– The length of the code of a partition R is the number of split made to get R from
the initial space.

– Let RegionOf (S) be a function that maps the code S of a partition R in the coor-
dinates of the lower left and upper right vertices of the partition. For example, Re-
gionOf (“00”) = {(0, 0), (50, 50)} and RegionOf (“011”) = {(25, 50), (50, 100)}.

– A total ordering for the partition codes is defined as follows: S1 < S2 if S1 is a
prefix of S2, or the first most significant bit of S1 is less than the correspondent
one of S2, or S1 and S2 have the same first n bits, and the (n + 1)-th bit of S1 is
less than the correspondent one of S2.
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The sorted partition codes are stored in a B+–tree, called G–tree (Figure 7.5d). In
each element (S, p) of a leaf node (represented in the figure as S∗), S is a partition
code without subpartitions, with data stored in the page p. In each non-leaf node of
the form

(p0, S1, p1, S2, p2, . . . , Sm, pm)

the usual relations among the elements of a node in a B+–tree hold, where the keys
are the codes Si.

Let us see how to proceed for point or range search. In order to facilitate the inter-
pretation of the use that will be made of the binary string of a partition code, and of
the operations on G–tree, it is useful to associate integer encodings to the partition as
follows.

Let M be the maximum number of splits made. Each partition code less than M
bits long is padded with trailing zeros and translated into decimal (Figure 7.5c). The
decimal form of the partition codes are shown in the partition tree and in theG–tree. It
is important to note that (a) the integer encoding of partitions, as well as the partition
tree, are not part of the G–tree, and (b) they must change if the value of M changes
because of insertion or deletion of points that change the G–tree structure.

Point Search. Let M be the maximum length of the partition numbers in the G–
tree. The search of a point P with coordinates (x, y) proceeds as follows:

1. The partition tree is searched for the code SP of the partition that contains P , if it
is present.

2. The G–tree is searched for the partition code SP to check if P is in the associated
page.

Example 7.4
Let us search the point P = (30, 60) in the G–tree of Figure 7.5d with M = 4.

From the partition tree it is found that it could be in the region SP = 011, i.e.
the region 6, that is in the leaf F2 of the G–tree.

Spatial Range Search. A spatial range search looks for the points Pi with co-
ordinates (xi, yi) such that x1 ≤ xi ≤ x2 and y1 ≤ yi ≤ y2, e.g. that are in the
query region R = {(x1, y1), (x2, y2))}, identified by the coordinates of vertices in
the lower left and upper right (Figure 7.5a). The query result is found as follows:

1. The G–tree is searched for the leaf node Fh of the partition containing the lower
left vertex (x1, y1) of R.

2. The G–tree is searched for the leaf node Fh of the partition containing the upper
right vertex (x2, y2) of R.

3. For each leaf from Fh to Fk (in theB+–tree the leaf nodes are sorted) the elements
S are searched such that RS = RegionOf (S) overlaps with the query region R. If
RS is fully contained in R, then all points in the associated page satisfy the query,
otherwise each point in it must be examined and checked.
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Example 7.5
Let us search the points in the region

R = {(35, 20), (45, 60)}

Using the integer encoding of partitions and the partition tree, the result is that
the lower left vertex (30, 20) is in the partition 0 and the upper right vertex
(40, 60) is in the partition 6. In the G–tree the partitions 0, 4, 5 and 6 are exam-
ined in order to check if they overlap with R.

For example, partition 0 with the code “00” corresponds to the region

RS = {(0, 0), (50, 50)}

that overlaps with R. Therefore the associated page is retrieved to check which
of its points are in the query result. Partitions 4 and 5 do not overlap with R,
while partition 6 overlaps and the points in the associated page must be exam-
ined.

Point Insertion. Let M be the maximum length of the partition codes in the G–
tree. The insertion of a point P with coordinates (x, y) proceeds as follows:

1. TheG–tree is searched for the leaf node F of the partitionRP that should contain
it. Let SP be the code of RP .

2. If RP is not full, insert P , otherwise RP is split in RP1 and RP2 , with codes
SP1 = SP “0” and SP2 = SP “1”. If the new strings have a length greater than M ,
M takes the value M +1, and the integer encoding of the partitions in Figure 7.6c
are changed.

3. The points in RP and P are distributed in RP1 and RP2 (the encoding of each
point is calculated as described in Step 1 of the point search algorithm and, if it
ends with “0”, the point is inserted in RP1 , otherwise in RP2).

4. The element (SP , pRP
) in the leaf F is replaced by (SP1 , pRP1

) and (SP2 , pRP2
).

If there is an overflow, the operation proceeds as in B+–trees.

For example, the insertion of the point P1 = (70, 65) is in the partition 8 with code
“1” and the associated page has space to contain it. Instead, the insertion of the point
P2 = (8, 65) is in the partition 4 with code “0100”, which has no space to contain
it and a split is required and the result is shown in Figure 7.6, with the new integer
encoding of the partitions.

Point Deletion. The deletion of a point P proceeds as follows:

1. Let F be the leaf node with the partition RP containing P , SP the partition code
ofRP , and S′ the partition code ofR′ obtained fromRP with a split and therefore
different from SP for the last bit only. S′ in the G–tree only if it has not yet been
split.

2. P is deleted from RP and then two cases are considered:

(a) R′ has been split: if the partition RP becomes empty, then SP is deleted from
the G–tree, otherwise the operation terminates.

(b) R′ has not been split: if the two partition cannot be merged because the num-
ber of their points is greater than the page capacity, the operation terminates.
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Figure 7.6: Point insertion in a partition to split

Otherwise the two partition are merged, SP and S′ are deleted from the tree,
and a new binary string S′′, obtained by removing the last bits from SP , is
inserted.

For example, if the points P1 and P2 are deleted from the G–tree in Figure 7.6, we
return to the situation of Figure 7.5.

7.3 B∗–trees *

A B∗–tree, a variant of the R–tree, is a dynamic tree structure perfectly balanced as
a B+–tree, for the retrieval of multidimensional data according to its spatial position.

For simplicity, we will consider the two-dimensional case only, and the data con-
sists of rectangles described by the coordinates of the bottom left and the top right
vertices. For objects of different shapes, the rectangle is the minimum one that con-
tains them.

Terminal nodes of a B∗–tree contain elements of the form (Ri, Oi), where Ri is
the rectangular data and Oi is a reference to the data nodes. The nonterminal nodes
contain elements of type (Ri, pi), where pi is a reference to the root of a subtree, and
Ri is the minimum bounding rectangle containing all rectangles associated with the
child nodes. For simplicity, in what follows we denote Oi as ∗, and we will call data
region a rectangular data, and region a minimum bounding rectangle.

Let M be the maximum number of items that can be stored in a node and m
the minimum number of items allowed in a node, the practice suggests to put m =
0, 4M . A B∗–tree satisfies the following properties:
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– The root node has at least two children unless it is the only node in the tree.
– Each node has a number of elements between m and M unless it is the root node.
– All leaf nodes are at the same level.

Example 7.6
Let us consider the rectangles in Figure 7.7a. The rectangles with the edges in
bold are data regions, while the others are regions.

Figure 7.7b shows a B∗–tree with M = 3 and m = 2 for the data of Fig-
ure 7.7a.

Note that the regions R22 and R23 contain the data region R6, but R23 is the
only parent region of R6 (Figure 7.7a). The choice of the parent region will be
discussed later.
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Figure 7.7: An example of R∗–tree

There are some substantial differences between the B∗–tree and B+–trees:

– The elements of the nodes of a B+–tree are sorted, while on those of a B∗–tree
there is no sort order.

– The regions associated with different elements of the same level may overlap in
a B∗–tree, unlike the intervals associated with the elements of a B+–tree that do
not overlap.

We will see later how these differences have an impact on the way we operate on a
B∗–tree.

The main operation on B∗–trees, is to find all data regions that overlap to a given
rectangular region R.



72 CHAPTER 7 Multidimensional Data Organizations c© 2015 by Albano et al.

Search Overlapping Data Regions. The search of the data regions overlap-
ping with R proceeds as follows. The root is visited in order to look for the elements
(Ri, pi) with Ri that overlaps with R. For each element (Ri, pi) found, the search
proceeds in a similar way in the subtrees rooted at pi. When a leaf node is reached,
the data regions Ri in the search result are those with Ri that overlaps with R.

Example 7.7
Let R be the rectangular region with dotted border in Figure 7.8.

During the search of overlapping data regions, in the root is found that R21
and R23 overlapR. Among the descendants of R21, R3 overlapsR, while among
the descendants of R23 both R5 and R7 overlap R. Therefore the search result is
R3, R5, and R7.
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Figure 7.8: An example of search for overlapping data regions

The operations that change the tree, such as insertions and deletions of objects, are
more complex and for a detailed description of them see the bibliographic notes.

Insertion. Let S be a new data region to insert in the tree. The operation is similar
to inserting a key in a B+–tree since S is stored into a leaf node, and if there is an
overflow, the node will be split into two nodes. In the worst case the division can
propagate to the parent node up to the root. But there is a fundamental difference
between the operations in the two types of trees.

In B+–trees there is a single node in which to insert a new element, because the
values of the keys in the nodes at the same level partition the domain of the key. In
the case of B∗–trees, since the regions in different internal nodes at the same level
may overlap, the new data region S may overlaps with more of them, and so it could
be inserted in more leaf nodes with a different parent node.

The choice of the region in an internal node can be made according to the degree of
overlap with S. For example, one can choose the one that needs the smallest increase
in the area to contain S. After having selected the leaf node N where to insert S, if
an overflow does not occur, the region is recalculated and its value propagates in the
parent node. Otherwise, two cases are considered:

1. Forced Reinsert. If this is the first overflow from a leaf node, it is not split; instead
p of the (M + 1) entries are removed from the node and reinserted in the tree. Ex-
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periments suggest that p should be about 30% of the maximal number of entries
per node, among those with the center at a greater distance from the center of the
region. This way of proceeding can avoid splitting the node, because the data re-
gions are placed in other nodes, and constitutes a form of dynamic reorganization
of the tree.

2. Node Splitting. After the first overflow, the (M + 1) elements are divided between
two nodes, and two new elements are inserted in the parent node, and the process
goes on to propagate the effects. The problem that arises is how to divide the ele-
ments of a node because different criteria can be used. In B∗–trees, the subdivision
that produces regions with minimum total perimeter is selected.

Example 7.8
Let us consider the Figure 7.7a, and assume to insert the data region S (Fig-
ure 7.9a). The process starts with the root node of the B∗–tree in Figure 7.9c.
Let the region R21 be selected for the insertion.

Following the associated pointer, the leaf node to the left is considered, and
since this node does not have enough space to contain S an overflow occurs.
Being the first, we proceed with the reinsertion of R1. The region R21 is updated
(not shown in the figure) and the reinsertion takes place in the same leaf node,
causing another overflow and then a subdivision. Suppose that we get {R1, S}
and {R2, R3}.

Let R24 and R25 be the regions containing (R1, S) and (R2, R3) (Figure 7.9b).
Consequently, two new elements have to be inserted into the root node to replace
R21 (Figure 7.9c).

Since in the root node there is not enough space to contain four elements, there
is an overflow. In the root the reinsertion it is not applied, but a subdivision is
made. The result is that the old root node is replaced by two new nodes, one
containing (R24, R25) and the other (R22, R23). Let R26 be the region containing
(R24, R25) and R27 be the region containing (R22, R23). A new root is added
with elements R26 and R27 (Figure 7.9d).
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R1,∗ S,∗ R2,∗ R3,∗ R4,∗ R8,∗ R5,∗ R6,∗

R25R24 R23R22
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Figure 7.9: Example of a rectangle insertion

Deletion. To delete a data region from aB∗–tree, if the leaf node does not become
underfull, it is checked whether the region to which it belongs can be reduced in size.
If so, the adjustment is propagated upwards. Otherwise, instead of proceeding as in
B+–trees, it is preferred to remove the tree node, update the parent nodes and reinsert
all its elements.

7.4 Summary

1. Multidimensional data is used to represent geometric objects such as points, seg-
ments, rectangles, polygons, and their position in a multidimensional space. They
require appropriate storage structures to allow searches for points, intervals, for the
nearest neighbor and partial match queries. Many solutions have been proposed
and in this chapter we discussed only two of them: G–trees and B∗–trees.

2. Multidimensional data is encountered in relational DBMSs, for a multi-attribute
search by interpreting the tuples of a relation as points in a space with attributes
that correspond to the dimensions, and in systems for text or image retrieval de-
scribed by a set of features.

3. Structures for multidimensional data are usually based on the idea of recursively
partitioning the space into regions of decreasing size that contain at most the
amount of data stored in a page. To facilitate search operations, information on
the regions are organized using various types of trees, where the nodes represent
regions and their children a partition of the region into smaller ones.

4. G–trees are an example of balanced trees to represent points of a k-dimensional
space. They combine the ideas of data space partitioning and ofB+–trees: the data
space is partitioned into regions of varying dimensions identified by an appropriate
code on which there is a total ordering and the set of codes is organized as a B+–
tree.

5. The B∗–trees are the most popular structure used by commercial DBMS exten-
sions dedicated to multidimensional data.
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Exercises

Exercise 7.1 Answer the following questions briefly:

– Explain the difference between a multi-attribute index stored in a B+–tree and a
multidimensional organization.

– Describe some examples of spatial queries.
– Describe some examples of nearest neighbor queries.

Exercise 7.2 Show the G–tree in Figure 7.5 after inserting the point (30, 30).

Exercise 7.3 Show theG–tree in Figure 7.5 after the deletion of the point (80, 30).

Exercise 7.4 Consider theB∗–tree shown in Figure 7.9d, and answer the following
questions.

1. Give an example of search of a data region that requires a visit of both the R26 and
R27 subtrees.

2. Give an example of a data region contained in both R26 and R27, and is inserted
into R27.
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Chapter 8

ACCESS METHODS
MANAGEMENT

Once the managers of the permanent memory, buffer and storage structures have been
implemented, with the Access Methods Manager there is a first version of a relational
Storage Engine, although it lacks transactions and concurrency. The Access Methods
Manager provides to the Relational Engine the operators used by its modules to
execute the commands for the definition and use of databases.

8.1 The Storage Engine

As a programming language transforms a computer into an abstract machine whose
characteristics and functionalities are mainly determined by those of the program-
ming language, so will a language to define and use databases transforms a computer,
and in particular its file management system, into an abstract database machine,
called the database management system, whose characteristics and functionalities
will depend mainly on those of the adopted data model.

An abstract database machine is normally divided into two parts: an abstract ma-
chine for the logical data model, called the Relational Engine, and an abstract ma-
chine for the physical data model, called the Storage Engine.

The Relational Engine includes modules to support the execution of SQL com-
mands, by interacting with the Storage Engine, which includes modules to execute
the operations on data stored in the permanent memory.

Normally the DBMS storage engine is not accessible to the user, who will interact
with the relational engine. An example of a system in which this structure is clearly
shown is System R, a relational DBMS prototype developed at the IBM scientific
center in San Josè, from which DB2 was then produced. This system has a relational
engine called a Relational Data System (RDS) and a storage engine called a Rela-
tional Storage System (RSS).

While the interface of the relational engine depends on the data model features,
the interface of the storage engine depends on the data structures used in permanent
memory. Although in principle it is possible to isolate a set of data structures to define
a storage engine suitable to the functionality of a engine for any of the data models, in
systems in use this does not occur because each of them adopt solutions for a specific
data model.

To give a better idea of the interface of a storage engine, we will consider the case
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of the relational system JRS, which stores relations in heap files and provides B+–
tree indexes to facilitate data retrieval. The operators on data exported by the storage
engine are procedural and can be grouped into the following categories:

– Operators to create databases.
– Operators to start and to end a transaction:

– beginTransaction: null→ TransId
to specify the beginning of a transaction. The operator returns the system gen-
erated transaction identifier.

– commit: TransId→ null
to specify the successful termination of a transaction.

– abort: TransId→ null
to specify the unsuccessful termination of a transaction with the request to
abort it.

– Operators on heap files and indexes.
– Operators about access methods available for each relation. Access methods are

ways of retrieving records from a table and consist of either a heap file scan or a
direct access using their RID obtained by an index scan with a search condition.

These operators are used by the relational engine to implement the system function-
ality. For example, the query optimizer translates a SQL query into a physical query
plan, in which each node is the algorithm that uses the storage engine operators to
evaluate the corresponding relational algebra operator.

Transactions and physical query plans will be discussed in forthcoming chapters.

8.2 Operators on Databases

The JRS storage engine stores a database, files and indexes, in a folder with the
following operators:

– createDB: Path × BdName × TransId→ null
creates a database in the path specified.

– createHeapFile: Path × BdName × heapFileName × TransId→ null
creates a heap file in the database in the path specified.

– createIndex: Path × BdName × IndexName × heapFileName × Attribute ×
Ord × Unique × TransId→ null

creates an index on a relation attribute, a key if Unique = true. The index is sorted by
default ascending, if Ord is not specified as desc. An index can be built on multiple
attributes, and several indexes can be defined on a relation.

A database, an index or a heap file are deleted with the operators:

– dropDB: Path × BdName × TransId→ null
– dropIndex: Path × BdName × IndexName × TransId→ null
– dropHeapFile: Path × BdName × heapFileName × TransId→ null

8.3 Operators on Heap Files

A database table is stored in a heap file on which there are operators to insert, delete,
retrieve or update records with a specified RID, or to get the number of pages used
and the number of the records.
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– HF insertRecord: Record→ RID
– HF deleteRecord: RID→ null
– HF getRecord: RID→ Record
– HF updateRecord: RID × FieldNum × NewField→ null
– HF getNPage: null→ int

HF getNRec: null→ int

A table is a set of records where each record contains the same number of fields and
can have a variable-length. As we will see later, a heap file supports a scan operation
to step through all the records in the file one at a time.

8.4 Operators on Indexes

An index is a set of records of type Entry organized as B+–tree. An Entry has two
attributes Value and RID. The Value is the search key and the RID is the identifier of the
record with the search key value.

The operators available on indexes are those to insert or delete elements, or to get
data about the B+–tree used to store them, such as the number of leaves, minimum
and maximum search key Value.

– I insertEntry: Value × RID→ null
– I deleteEntry: Value × RID→ null
– I getNkey: null→ int

I getNleaf: null→ int
– I getMin: null→ Value

I getMax: null→ Value

An index provides a way to efficiently retrieve all records that satisfy a condition on
the search key, through operators that we will see later.

8.5 Access Method Operators

The Access Methods Manager provides the operators to transfer data between per-
manent memory and main memory in order to answer a query on a database. Perma-
nent data are organized as collections of records, stored in heap files, and indexes are
optional auxiliary data structures associated with a collection of records. An index
consists of a collection of records of the form (key value, RID), where key value is a
value for the search key of the index, and RID is the identifier of a record in the rela-
tion being indexed. Any number of indexes can be defined on a relation, and a search
key can be multi-attribute. The operators provided by the Access Methods Manager
are used to implement the operators of physical query plans generated by the query
optimizer.

Records of a heap file or of an index are accessed by scans. A heap file scan oper-
ator simply reads each record one after the other, while an index scan provides a way
to efficiently retrieve the RID of a heap file records with a search by key values in a
given range.

The records of a heap file can be retrieved by a serial scan or directly using their
RID obtained by an index scan with a search condition.

A heap file or index scan operation is implemented as an iterator, also called cur-
sor, which is an object with methods that allow a consumer of the operation to get the
result one record at a time. The iterator is created with the function open, and has the
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methods (a) isDone, to know if there are records to returns, (b) getCurrent, to return a
record, (c) next, to find the next record, and (d) close to end the operations.

When a heap file iterator is created, it is possible to specify the RID of the first
record to return. Instead, when an index iterator is created a key range is specified.

Once an iterator C is opened, a scan is made with the following type of program:

while not C.isDone() {
Value := C.getCurrent();
. . . ;
C.next()

};

Heap File Scan Operators.

HFS open: HeapFile→ ScanHeapFile
HFS open: HeapFile × RID→ ScanHeapFile

The ScanHeapFile iterator methods are:

– HFS isDone: null→ boolean
– HFS next: null→ null
– HFS getCurrent: null→ RID
– HFS reset: null→ null
– HFS close: null→ null

Index Scan Operators.

IS open: Index × FirstValue × LastValue→ ScanIndex

The ScanIndex iterator methods are::

– IS isDone: null→ boolean
– IS next: null→ null
– IS getCurrent: null→ Entry
– IS reset: null→ null
– IS close: null→ null

8.6 Examples of Query Execution Plans

Let us see some examples of programs that use access methods of the storage engine
to execute simple SQL queries. The programs show the nature of possible query exe-
cution plans that might be generated by the query optimizer of the relational engine.
However, as we will see in Chapters 11 and 12, the query optimizer does not trans-
late a SQL query in a query execution plan of this type, but in a physical plan, an
algorithm to execute a query given as a tree of physical operators. These operators
use those of the access methods to implement a particular algorithm to execute, or to
contribute to the execution, of a relational algebra operator.

Example 8.1
Let us consider the relation Students with attributes Name, StudentNo, Address
and City, and the query:
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SELECT Name
FROM Students
WHERE City = ’Pisa’;

Assuming the relation is stored in a file with the same name, the structure of a
possible program to execute the query is:

HeapFile Students = HF open(′′path′′, ′′bd′′, ′′Students′′, transId);
ScanHeapFile iteratorHF = HFS open(Students);
while ( ! iteratorHF.HFS isDone() ) {

Rid rid = iteratorHF.HFS getCurrent();
Record theRecord = Students.HF getRecord(rid);
if ( theRecord.getField(4).(′′Pisa′′) )

System.out.println(theRecord.getField(1));
iteratorHF.HFS next();

}
Students.HF close();
iteratorHF.HFS close();

Example 8.2
Assuming that on Students there is an index IdxCity on the attribute City. A more
efficient program to retrieve the Pisa students’ name is:

HeapFile Students = HF open(′′path′′, ′′bd′′, ′′Students′′, transId);
Index indexCity = I open(′′path′′, ′′bd′′, ′′IdxCity′′, transId);
ScanIndex iteratorIndex = IS open(indexCity, ′′Pisa′′, ′′Pisa′′);
while ( ! iteratorIndex.IS isDone() ) {

Rid rid = iteratorIndex.IS getCurrent().getRid();
Record theRecord = Students.HF getRecord(rid);
System.out.println(theRecord.getField(1));
iteratorIndex.IS next();

}
interatorIndex.IS close();
Students.HF close();
indexCity.I close();

8.7 Summary

1. A DBMS Storage Engine provides a set of operators used by the Query Manager
to generate a query execution plan. The main abstractions provided are: creation
of databases, heap files, indexes, and to start and to end transactions.

2. The operators available on heap files are those to retrieve records using their RID.
3. The operators available on indexes are those to retrieve their elements using a

search key value.
4. An access method is a way for retrieving records from a table and consists of

either a file scan (i.e. a complete retrieval of all records) or an index scan with
a matching selection condition. An access method is implemented as an iterator,
which is an object with methods that allow a consumer of the operation to get the
result one record at a time.
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Chapter 9

TRANSACTION AND
RECOVERY MANAGEMENT

One of the most important features of a DBMS are the techniques provided for the
solution of the recovery and concurrency problems, to allow the users to assume that
each of their applications is executed both as if there were no failures, and that there
were no interferences with other applications running concurrently. The solutions
of these problems are based on the abstraction mechanism called transaction. The
correct implementation of transactions requires some of the most sophisticated algo-
rithms and data structures of a DBMS. In this chapter we will focus on transactions
as a mechanism to protect data from failures, while in the next one we will examine
the aspects of transactions concerning the concurrency control to avoid interference.

9.1 Transactions

A database is a model of some aspect of the world to serve an explicit purpose in
providing information about that aspect of the world being modeled. In general, there
are rules defined in the database schema, called static integrity constraints, that must
be satisfied by all database states, and others, called dynamic integrity constraints
that restrict allowable state transitions.

� Definition 9.1 Consistent State
A consistent state of the database is a state in which all integrity constraints
are satisfied.

When an event occurs in the real world that changes the modeled reality state, to en-
sure that the database state changes in a corresponding way, a mechanism to properly
group operations on the database into atomic units of work, called transactions is
necessary.

We assume that a transaction is correct, that is, it causes the database to change
from one consistent state to another consistent state when performed alone. The
DBMS must guarantee that this property holds even if there is a system failure and
when the transaction is performed concurrently with other transactions, by avoiding
interferences that affect their correctness.

The following example shows why the transactions mechanism is necessary to
protect a database from failures.
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Example 9.1
Consider an application program to manage flight reservations for an airline
company. To reserve a flight from the city C1 to C3 with a connecting flight at
C2, two different reservations must be made: one for the flight from C1 to C2,
and another for the flight from C2 to C3. Let us assume that one of the integrity
constraints is that the sum of the available and reserved seats on a flight does
not exceed the number of seats on the flight. Therefore, the following actions
should be undertaken:

1. Decrease by one the available seats on the flight from C1 to C2.
2. Increase by one the reserved seats on the flight from C1 to C2.
3. Decrease by one the available seats on the flight from C2 to C3.
4. Increase by one the reserved seats on the flight from C2 to C3.

In the time interval between steps 2 and 3, although the database is in a consis-
tent state, if the application is interrupted due to some kind of failure, the state of
the database would be incorrect, since such a state would not be in accordance
with the user’s intentions. In fact the application should reserve both flights, or
none of them, to model a correct situation.

Let us present the concept of transaction both from the programmer’s point of view
and from the system’s point of view.

9.1.1 Transactions from the Programmer’s Point of View

A DBMS provides a programming abstraction called a transaction, which groups
together a set of instructions that read and write data. In this context the term trans-
action is used instead for the execution of a user program. Different executions of the
same program produce different transactions.

� Definition 9.2 A transaction is a sequence of operations on the database
and on temporary data, with the following properties:

Atomicity Only transactions terminated normally (committed transac-
tions) change the database; if a transaction execution is inter-
rupted because of a failure (aborted transaction), the state of
the database must remain unchanged as if no operation of the
interrupted transaction had occurred.

Isolation When a transaction is executed concurrently with others, the
final effect must be the same as if it was executed alone.

Durability The effects of committed transactions on the database survive
system and media failures, i.e. commitment is an irrevocable
act.

The acronym ACID is frequently used to refer to the following four properties of trans-
actions: Atomicity, Consistency, Isolation, and Durability. Among these properties,
atomicity, durability and isolation are provided by a DBMS. Consistency cannot be
ensured by the system when the integrity constraints are not declared in the schema.
However, assuming that each transaction program maintains the consistency of the
database, the concurrent execution of the transactions by a DBMS also maintain con-
sistency due to the isolation property.
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The isolation property is sometime called the serializability property: when a trans-
action is executed concurrently with others, the final effect must be the same as a
serial execution of committed transactions, i.e. the DBMS behaves as if it executes
the transactions one at a time.

The DBMS module that guarantees the properties of atomicity and durability, in
order to protect the database from different kinds of failures, is called the Transaction
and Recovery Manager. The isolation property, on the other hand, is guaranteed by
the Concurrency Manager, which will be discussed in the next chapter.

When studying transactions, we abstract from the specific language in which they
are written. The same considerations apply when a programming language with database
operators is used, as well as when a transaction is a set of SQL statements terminated
by a COMMIT or ROLLBACK command.

Example 9.2
Suppose we have a database with two relations

CheckingAccounts(Number, Balance)
SavingAccounts(Number, Balance)

Figure 9.1 shows a program to transfer a money amount from a saving account
to a checking account. The ROLLBACK command signals to the DBMS that the
transaction must be undone, while the COMMIT command signals to the DBMS
to finalize the changes.

9.1.2 Transactions from the DBMS’s Point of View

Although a transaction performs many operations on the data retrieved by the database,
a DBMS only “sees” the read and write operations on its data. A write operation up-
dates a page in the buffer, but does not cause an immediate transfer of the page to
the permanent memory, as we will show later. For this reason, if for some kind of
failure the content of the buffer is lost, the updates might not have been written to
the database. To correct this situation, the DBMS will have to take special preventive
measures.

� Definition 9.3
A transaction for the DBMS is a sequence of read and write operations which
start and end with the following transaction operations:

– beginTransaction, signals the beginning of the transaction;
– commit, signals the successful termination of the transaction, and re-

quires the system to make its updates durable;
– abort, signals the abnormal termination of the transaction, and requires

the system to undo its updates.

The transaction operations are not necessarily part of the user’s code: beginTransac-
tion and commit could be issued automatically at the beginning and the end of the
program, while abort could be automatically generated by the concurrency manager.
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program MoneyTransfer;
var
exec sql begin declare section

xAmount, Amount, xBalance: integer;
Number, FromAccount, ToAccount: array [1..6] of char;

exec sql end declare section

begin
exec sql connect “UserId” identified by “Password”;
{Input data is read}
writeln(’Write Amount, Withdrawals Account, Deposit Account’);
read(Amount, FromAccount, ToAccount);
exec sql

select Balance into :xBalance
from SavingAccounts
where Number= :FromAccount;

if xBalance < Amount
then

begin
writeln(’Insufficient Balance’); rollback;
end

else
begin

exec sql
update SavingAccounts
set Balance = :xBalance – :Amount
where Number = :FromAccount;

exec sql
update CheckingAccounts
set Balance = :xBalance + :Amount
where Number = :ToAccount;

end;
if sqlcode = 0 then commit else rollback
end;
end {program}.

Figure 9.1: An example of transaction
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The execution of the commit operation does not guarantee the successful termination
of the transaction, because it is possible that the transaction updates cannot be written
to the permanent memory, and therefore it will be aborted, as we will see in the
following. Figure 9.2 shows the different states of a transaction execution.

PARTIALLY
COMMITTED COMMITTED

FAILED ABORTED

ACTIVE

read
write

begin transaction

co
mmit

abort

Figure 9.2: State transition diagram for transaction execution

� Definition 9.4 Transaction State

– A transaction enters into the active state immediately after it starts exe-
cution, where it stays while it is executing.

– A transaction moves to the partially committed state when it ends.
– A transaction moves to the committed state if it has been processed suc-

cessfully and all its updates on the database have been made durable.
– A transaction moves to the failed state if it cannot be committed or it has

been interrupted after a transaction failure while in the active state.
– A transaction moves to the aborted state if it has been interrupted and all

its updates on the database have been undone.

A transaction is said to have terminated if it has either committed or aborted.

9.2 Types of Failures

A centralized database can become inconsistent because of the following types of
failures: transaction failure, system failure or media failure. We assume that the oc-
currence of a failure is always detected, and this causes:
– the immediate interruption of a transaction or of the whole system, depending on

the type of failure;
– the execution of specific recovery procedures to ensure that the database only con-

tains the updates produced by committed transactions.

� Definition 9.5 Transaction Failure
A transaction failure is an interruption of a transaction which does not dam-
age the content of either the buffer or the permanent memory.

A transaction can be interrupted (i.e., it can fail) because (a) the program has been
coded in such a way that if certain conditions are detected then an abort must be is-
sued, (b) the DBMS detects a violation by the transaction of some integrity constraint
or access right, or (c) the concurrency manager decided to abort the transaction since
it was involved in a deadlock.
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� Definition 9.6 System Failure

A system failure is an interruption (crash) of the system (either the DBMS
or the OS) in which the content of the buffer is lost, but the content of the
permanent memory remains intact.

When a system crash occurs, the DBMS is restarted, automatically or by an operator.

� Definition 9.7 Media Failure

A media failure (distaster or catastrophe), is an interruption of the DBMS
in which the content of the permanent memory is corrupted or lost.

When a media failure occurs, the recovery manager uses a backup to restore the
database.

9.3 Database System Model

A view of the components of a centralized DBMS, already presented in general terms,
is shown again in Figure 9.3 with an emphasis on some aspects specific to transaction
management.

DBMS
RELATIONAL ENGINE

STORAGE ENGINE
ACCESS METHODS

MANAGER

STORAGE STRUCTURES
MANAGER

BUFFER
MANAGER

PERMANENT MEMORY
MANAGER

TRANSACTION
AND

RECOVERY
MANAGER

CONCURRENCY
MANAGER

PERMANENT
MEMORY

DATABASE

LOG

DB BACKUP

SQL
COMMANDS

Figure 9.3: Model of a DBMS

To guarantee the atomicity and durability properties of transactions, the permanent
memory consists of three main components: the database, and a set of auxiliary data
(Log and DB Backup) used by the recovery procedure in the case of failures. The
database, log and backup are usually stored on distinct physical devices. Moreover,
since the log files pages are managed with a different algorithm from that used for
the database pages, the systems use different buffers for these two types of pages.

To simplify the description of the system, we will suppose that transactions update
pages, and not records, which are usually smaller than pages, as it happen in real
situations.



c© 2015 by Albano et al. 9.4 Data Protection 89

The Transaction and Recovery Manager performs the following tasks: (a) the exe-
cution of a read, write, commit and abort operation on behalf of transactions; (b) the
management of the log; (c) the execution of a restart command after a system fail-
ure, that guarantees that the database only contains the updates of the successfully
terminated transactions.

In the next sections the data structures and algorithms used by the recovery man-
ager will be discussed. To simplify the presentation we assume that:

1. The database is just a set of pages.
2. Each update operation affects a single page.
3. The operation of transferring a page from the buffer to the permanent memory is

an atomic operation.
4. If different transactions are concurrently in execution, they read and write dif-

ferent pages. We will discuss in the next chapter the case of conflicts between
transactions accessing the same pages.

Next section presents data protection, then Section 9.5 presents classes of recovery
algorithms, Section 9.6 presents the recovery manager operators to deal with trans-
action and system failures, and Section 9.7 presents the recovery manager algorithms
for system and media failures.

9.4 Data Protection

We have already discussed how the database can be in an incorrect state due to a
transaction, system or media failure. The different techniques that are used in these
situations share the common principle of redundancy: to protect a database the DBMS
maintains some redundant information during normal execution of transactions so
that in the case of a failure it can reconstruct the most recent database state before the
occurrence of the failure.

� Definition 9.8 Recovery
The recovery is the process that restores the database to the consistent state
that existed before the failure.

We now discuss the main additional information that make possible the recovery of a
database.

Database Backup. DBMSs provide facilities for periodically making a backup
copy of the database (database dump) onto some form of tertiary storage.

Log. During the normal use, the history of the operations performed on the database
from the last backup is stored in the log.

For each transaction Ti, the following information is written to the log:

– When the transaction starts, the record (begin, Ti).
– When the transaction commits, the record (commit, Ti).
– When the transaction aborts, the record (abort, Ti).
– When the transaction modifies the page Pj the record (W , Ti, Pj , BI , AI), where
BI is the old value of the page (before image) and AI is the new version of the
page (after image)1.
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Operation Data Information in the log

beginTransaction (begin, 1)
r[A] A = 50 No record written to the log
w[A] A = 20 (W, 1, A, 50, 20) — Old and new

value of A are written to the log
r[B] B = 50 No record written to the log
w[B] B = 80 (W, 1, B, 50, 80)
commit (commit, 1)

Figure 9.4: The operations of a transaction and the corresponding records in
the log

Each log record is identified through the so called LSN (Log Sequence Number), that
is assigned in a strictly increasing order. A LSN could be, for instance, a serial number
of the position of the first character of the record in the file.

Figure 9.4 shows a simple example of the information written to the log by the
operations of a transaction, assuming for simplicity thatA andB are pages containing
just an integer value.

The exact content of the log depends on the algorithms of the transaction manager,
which we will discuss later. For instance, in some cases it is not necessary to write
both the before and the after image of a modified page.

In general a log is stored in a file buffered for efficiency reasons. The log has pages
on its own which are only written to the permanent memory when they become full
in the buffer, and not when a single record is written to the page. For this reason,
the transaction manager sometime forces the writing of a log page to the permanent
memory, to prevent data loss in the case of system failure. For simplicity, we assume
for now that the log is not buffered and each record is immediately written to the
permanent memory.

Undo and Redo Algorithms. A database update changes a page in the buffer,
and only after some time the page may be written back to the permanent memory.
Recovery algorithms differ in the time when the system transfers the pages updated
by a transaction to the permanent memory.

We say that a recovery algorithm requires an undo if an update of some uncom-
mitted transaction is stored in the database. Should a transaction or a system failure
occur, the recovery algorithm must undo the updates by copying the before-image of
the page from the log to the database (Figure 9.5a).

We say that a recovery algorithm requires redo if a transaction is committed before
all of its updates are stored in the database. Should a system failure occur after the
transaction commits but before the updates are stored in the database, the recovery
algorithm must redo the updates by copying the after-image of the page from the log
to the database (Figure 9.5b).

A failure can happen also during the execution of a recovery procedure, and this
requires the restart of the procedure. This means that for such procedures the idem-
potency property must hold. That is, even if the operation is executed multiple times
the effect is the same as if it is executed once. For the assumption that the entire page
is replaced, this property is automatically fulfilled.

1. In real systems the records written to the log are more compact than the new or old version of the
page.
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Figure 9.5: Undo and Redo algorithms

Checkpoint. To reduce the work performed by a recovery procedure in the case
of system failure, another information is written to the log, the so called checkpoint
(CKP) event.
In the literature different methods of performing and recording checkpoints have been
discussed. Here we show the two methods most commonly used.

The first one is based on the hypothesis that a checkpoint should mark a state
in which the log is completely aligned with a correct state of the database (commit-
consistent checkpoint). In this case, after either a constant period of time, or a constant
number of records written to the log, the system performs the following steps.

� Definition 9.9 Commit-consistent checkpoint
When the checkpoint procedure starts, the following actions are performed:

1. The activation of new transactions is suspended.
2. The systems waits for the completion of all active transactions.
3. All pages present in the buffer which have been modified are written to

the permanent memory and the relevant records are written to the log
(flush operation).

4. The CKP record is written to the log.
5. A pointer to the CKP record is stored in a special file, called restart file.
6. The system allows the activation of new transactions.

In the third step, the transferring of the modified pages to the permanent memory is
forced so that all the transactions terminated before the checkpoint have their updates
made durable in the database, and must not be redo in the case of system failures.

This strategy is simple to implement but not efficient, because of the steps (1) and
(2). This discourages a frequent execution of the checkpoint procedure, and conse-
quently increases the work that must be done in the case of restart. The problem of
finding the optimal checkpoint interval can be solved with a balance between the cost
of the checkpoint and that of the recovery, but this is a “difficult” problem, and usu-
ally the following, more complex but more efficient checkpoint method is preferred,
called buffer-consistent checkpoint – Version 1.
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� Definition 9.10 Buffer-consistent checkpoint – Version 1

When the checkpoint procedure starts, the following actions are performed:

1. The activation of new transactions is suspended.
2. The execution of database operation of the active transactions is sus-

pended.
3. All pages present in the buffer which have been modified are written to

the permanent memory and the relevant records are written to the log
(flush operation).

4. The CKP record, containing the list of the identifiers of the active trans-
actions, is written to the log.

5. A pointer to the CKP record is stored in a special file, called restart file.
6. The system allows the activation of new transactions and continues the

execution of the active transactions.

This method does not need the waiting for the termination of active transactions.
However, it still presents the problem of the buffer flush operation, which, in the case
of a big buffer, is a costly operation. For this reason other methods have been studied
to reduce the checkpoint execution time. One of this is the ARIES algorithm, that
avoids (a) the suspension of the activation of new transactions and the execution of
active transactions, and (b) the buffer flush operation.

9.5 Recovery Algorithms

The Recovery managers for the transactions management differ in the way they com-
bine the undo and redo algorithms to recover the last consistent state of a database
from a system failure. Undo and redo algorithms can be combined in four different
ways and each combination defines a new recovery algorithm:

Undo-Redo requires both undo and redo.
Undo-NoRedo requires undo but not redo.
NoUndo-Redo requires redo but not undo.
NoUndo-NoRedo requires neither undo nor redo.

9.5.1 Use of the Undo Algorithm

The use of the undo algorithm depends on the policy used to write pages updated by
an active transaction to the database. There are two possibilities:

1. Deferred update
2. Immediate update.

These two policies are called NoUndo-Undo (Fix-NoFix, NoSteal-Steal).

� Definition 9.11

The deferred update policy requires that updated pages cannot be written to
the database before the transaction has committed.
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To avoid that pages updated by a transaction are written to the database, they are
“pinned” in the buffer until the end of the transaction.

An algorithm for the execution of the transaction with the deferred update policy
is of the NoUndo type: when a transaction or system failure occurs it is not necessary
to undo its updates since the database has not been changed.

� Definition 9.12

The immediate update policy allows that updated pages can be written to the
database before the transaction has committed.

To allow the buffer manager to write an updated page to the database before the
transaction has committed, the page is marked as “dirty” and its pin is removed.

An algorithm that adopts the immediate update policy is certainly of the Undo type:
if a transaction or system failure occurs the updates on the database must be undone.

To undo the updates of a transaction the following rule must be observed.

� Definition 9.13 Undo Rule (Write Ahead Log, WAL)

If a database page is updated before the transaction has committed, its before-
image must have been previously written to the log file in the permanent
memory.

This rule enables a transaction to be undone in the case of abort by using the before-
images from the log.

Because of the hypothesis that a write to the log is immediately transferred to the
permanent memory, to guarantee such rule it is sufficient to “unpin” the updated page
after the write to the log.

9.5.2 Use of the Redo Algorithm

The use of the redo algorithm depends on the policy used to commit a transaction.
There are two possibilities:

1. Deferred commit.
2. Immediate commit.

These two policies are called NoRedo-Redo (NoFlush-Flush, NoForce-Force).

� Definition 9.14

The deferred commit policy requires that all updated pages are written to the
database before the commit record has been written to the log.

A transaction that implements the deferred commit policy is of the NoRedo type,
since it is not necessary to redo all the updates on the database in the case of failure.
With this solution, however, the buffer manager is forced to transfer to the permanent
memory all the pages updated by the transaction before the commit operation.
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� Definition 9.15

The immediate commit policy allows the commit record to be written to the
log before all updated pages have been written to the database.

An algorithm that implements the immediate commit policy is of the Redo type, since
it is necessary to redo all the updates in the case of a system failure. On the other hand
the buffer manager is free to transfer the unpinned pages to the permanent memory
when it considers appropriate.

To redo the updates of a transaction, the following rule must be observed.

� Definition 9.16 Redo Rule or Commit Rule

Before a transaction can commit, the after-images produced by the transac-
tion must have been written to the log file in the permanent memory.

If this rule is not followed, a system failure shortly after the transaction commit will
lose the last after-images, making it impossible to redo the transaction.

9.5.3 No use of the Undo and Redo Algorithms

A NoUndo algorithm requires that all the updates of a transaction must be in the
database after the transaction has committed. Conversely a NoRedo algorithm re-
quires that all the updates of a transaction must be in the database before the trans-
action has committed. Therefore, a NoUndo-NoRedo algorithm requires that all the
updates of a transaction must be in the database neither before nor after the transac-
tion has committed. Thus the only possibility is that the commit operation atomically
writes all the updates of a transaction to the database and mark the transaction as
committed. This is feasible using the so called shadow pages technique proposed
in [Lorie, 1977]. The basic idea is shown in Figure 9.6.

The implementation is based on a permanent memory index that maps each page
identifier to the physical address where the page is stored (Page Table).

Moreover, there exists at a fixed address of the permanent memory the database
descriptor, a record that contains a pointer to the Page Table (Figure 9.6a).

When a transaction starts, a copy of the Page Table is created in the permanent
memory (New Page Table), and it is used by the transaction.

When a transaction updates for the first time a page, for instance page 1, the fol-
lowing actions happen (Figure 9.6b):

1. A new database page is created, the current page, with a certain address p. The
old page in the database is unchanged, and becomes a shadow page.

2. The New Page Table is updated so that the first element contains the physical
address p of the current page.

All the subsequent read and write operations on that page performed by the transac-
tion will operate on the current page.

When the transaction reaches the commit point, the system should substitute all
the shadow pages with an atomic action, otherwise if a failure would happen during
the execution of the commit operation, the database would be left in an incorrect
state, since with this approach there is no log to record the information needed for the
recovery. This atomic action is implemented by executing the following steps:
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Page Table

New Page Table
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2 •
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5 •

Page Table

New Page Table
commit

(b)

Figure 9.6: The shadow pages technique

1. The pages updated in the buffer are written to the permanent memory, while the
Page Table (that references the shadow pages) is unchanged.

2. The descriptor of the database is updated with an atomic operation, by replacing
the pointer to the Page Table with that to the New Page Table, that becomes the
new Page Table.

In the case of failures, the New Page Table is ignored and the database descriptor
continues to reference the initial Page Table, which is unchanged.

This technique has several shortcomings:

– The pages occupied by records of the same table are scattered in the permanent
memory (storage fragmentation).

– There is the need of a garbage collection algorithm to put the shadow pages back
in the list of free pages.

– Some kind of log must still be maintained to deal with disasters.
– This method becomes complex if the system manages concurrent transactions.
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9.6 Recovery Manager Operations

In this section three simplified implementations of the following operators of the
Recovery Manager are presented. They are executed atomically and differ for the
policy used to deal with the page updates and the termination of transactions.

beginTransaction ( ) marks the beginning of a transaction and returns its identifier
T , automatically generated.

read (T, P ) reads the page P into the buffer for transaction T .
write (T, P, V ) updates the page P in the buffer with the new version V for

transaction T .
commit (T ) for the successful termination of transaction T .
abort (T ) for the unsuccessful termination of transaction T .
restart ( ) bring the database in its last consistent state after a system

failure.

To implement these operations, the following operators of the buffer manager and log
manager will be used:

– Buffer manager

getAndPinPage (P ) reads the page P from permanent memory into buffer, if is
not already present, pins it, and returns the address of the
buffer page.

unpinPage (P ) removes the pin from the page P .
updatePage (P, V ) modifies the page P with V and sets its dirty bit.
flushPage (P ) forces the transfer of page P to the permanent memory, if

dirty.
setNoDirty (P ) sets page P in the buffer as not dirty.
undoPage (P, V ) reads the page P from permanent memory into buffer, if not

already present, modifies it with V , removes the pin and sets
its dirty bit.

– Log manager

append (LogRec) appends at the end of log a record of one of the following
types:2 (begin, T ), (commit, T ), (abort, T ) and, for update op-
erations, (W , T , P ,BI ,AI), (W , T , P ,BI) or (W , T , P ,AI),
with BI and AI the values of the before and after image of P .

For simplicity, we ignore the read (T, P ) operation, identical in all the recovery algo-
rithms: the operation calls getAndPinPage (P ), and when it has done reading the page,
it calls unpinPage (P ).

9.6.1 Undo-NoRedo Algorithm

In this class of algorithms, redoing a transaction to recover from a system failure is
never necessary. Thus only the before-image must be written to the log, to deal with
transaction and system failures.

A database page is updated before the commit record is written to the log (Fig-
ure 9.7).

2. The first value is a string that represents the type of operation.
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The operation restart is efficient, but the execution of transactions is hindered by the
fact that at the commit point all the pages updated must be written to the database.
Moreover, transaction failures require the undo of its updates, so this type of algo-
rithm is generally used with pessimistic concurrency control algorithm that rarely
aborts transactions.

beginTransaction()
T := newTransactionIde();
Log.append(begin, T);
return(T).

write(T, P, V)
Buffer.getAndPinPage(P);
BI := page P;
Log.append(W, T, P, BI);
Buffer.updatePage(P, V);
Buffer.unpinPage(P).

commit(T)
for each P ∈ Buffer updated by T do

Buffer.flushPage(P);
Log.append(commit, T).

abort(T)
Log.append(abort, T);
for each LogRec ∈ Log with P updated by T do

Buffer.undoPage(P, LogRec.BI).
restart()

for each (begin, Ti) ∈ Log do
if (commit, Ti) 6∈ Log
then undo (Ti).

Figure 9.7: Operators for the Undo-NoRedo algorithm

9.6.2 NoUndo-Redo Algorithm

In this class of algorithms, undoing a transaction to recover from a system failure is
never necessary. Thus only the after-image must be written to the log, to deal with
system failures.

The pages updated by a transaction are written to the database when the transaction
has committed, but after the writing of the commit record to the log (Figure 9.8).

The recovery algorithm performs efficiently with transaction failures, since it is
sufficient to ignore the pages updated in the buffer, and for this reason it is preferred
in conjunction with an optimistic concurrency control algorithm, which aborts trans-
actions in case of conflict, described in the next chapter.

beginTransaction()
T := newTransactionIde();
Log.append(begin, T);
return(T).

write(T, P, V)
Buffer.getAndPinPage(P);
AI := V;
Log.append(W, T, P, AI );
Buffer.updatePage(P, V).

commit(T)
Log.append(commit, T);
for each P ∈ Buffer updated by T do

Buffer.unpinPage(P).
abort(T)

Log.append(abort, T);
for each P ∈ Buffer updated by T do
{Buffer.setNoDirty(P);

Buffer.unpinPage(P). }
restart()

for each (begin, Ti) ∈ Log do
if (commit, Ti) ∈ Log
then redo (Ti).

Figure 9.8: Operators for the NoUndo-Redo algorithm

9.6.3 Undo-Redo Algorithm

This class of algorithms require both undo and redo, and is the most complicated
one. Thus both the after-image and the before-image must be written to the log to
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deal with transaction and system failures.
The pages updated by a transaction may be written to the database before, during,

or after commit (Figure 9.9). The decision is left to the buffer manager.
The recovery algorithm is more costly that in the previous cases, but this solution is

usually preferred by the commercial DBMS, since it privileges the normal execution
of transactions. Systems that use this algorithm are, for instance, DB2, Oracle, SQL
Server.

beginTransaction()
T := newTransactionIde();
Log.append(begin, T);
return(T).

write(T, P, V)
Buffer.getAndPinPage(P);
BI := page P; AI := V;
Log.append(W, T, P, BI, AI);
Buffer.updatePage(P, V);
Buffer.unpinPage(P).

commit(T)
Log.append(commit, T).

abort(T)
Log.append(abort, T);
for each LogRec ∈ Log with P updated by T do

Buffer.undoPage(P, LogRec.BI).
restart()

for each (begin, Ti) ∈ Log do
if (commit, Ti) ∈ Log
then redo (Ti) else undo (Ti).

Figure 9.9: Operators for the Undo-Redo algorithm

From the above discussion it is easy to imagine how the quality of an algorithm
depends on many factors. In particular, it has been shown in [Agrawal and Witt,
1985] how it also depends on the techniques adopted by concurrency control. The
results of experiments on the performances of various combinations of techniques
for concurrency control and recovery for centralized systems in terms of average
duration of transactions are presented. From the analysis of the results it has been
shown that the most appropriate combination is the use of the Undo-Redo algorithm
and the strict two-phase locking concurrency control, described in the next chapter.

In the rest of the chapter we will only consider an Undo-Redo algorithm and an
introduction on the subject of recovery from system and media failures is presented.

9.7 Recovery from System and Media Failures

In the case of system failures, in order to recover the database, the restart operator is
invoked to perform the following steps (warm restart):

– Bring the database in its committed state with respect to the execution up to the to
the system failure.

– Restart the normal system operations.

Let us describe a simple version of an algorithm for the first task, a process in two
phases called rollback and rollforward. In the following the checkpoint is assumed
of type buffer-consistent – Version 1, and that the rollback phase is performed before
the rollforward one.

In the rollback phase the log is read from the end to the beginning (a) to undo, if
necessary, the updates of the non terminated transactions and (b) to find the set of the
identifiers of the transactions which are terminated successfully in order to redo their
operations. In particular, the following actions are performed until the first checkpoint
record is found, to construct two sets, initially both empty: Lr (set of transactions to
be redone), Lu (set of transactions to be undone).
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– If a record is (commit, Ti ), Ti is added to Lr.
– If a record is an update of a transaction Ti, if Ti 6∈ Lr, the operation is undone and
Ti is added to Lu.

– If a record is (begin, Ti ), Ti is removed from Lu.
– If a record is (CKP, L), for each Ti ∈ L, if Ti 6∈ Lr, then Ti is added to Lu. If Lu

is not empty, the rollback phase continues after the checkpoint record until Lu is
emptied.

In the rollforward phase, the log is read onward from the first record after the check-
point to redo all the operations of the transaction Ti successfully terminated, that
is Ti ∈ Lr. When a record is (commit, Ti ), Ti is removed from Lr and this phase
terminates when Lr is emptied.

Example 9.3
Figure 9.10 shows the different states of a databases caused by transactions
managed with the Undo-Redo algorithm. S1 is a state during a checkpoint that
is not correct due to the presence of active transactions (time tck). A system
failure at time tf leaves the database in a non correct state S2.

tck tf

S0

Initial state
S1

Checkpoint state
S2

State at the malfunctioning time

T1

T2

T3

T4

T5

Figure 9.10: States of a database

During the restart, the actions of transaction T3 and T5 must be undone, while
those of T2 and T4 must be redone since, even if T2 and T4 have reached the
commit point before the failure (in the log there are the records (commit, T2 )
and (commit, T4 )), it is not guaranteed that their updates had been effectively
transferred to the database.

Suppose that the log contains the following information at the time of system
failure (LSN is the Log Sequence Number):3

Log

LSN Record LSN Record LSN Record

1 (begin, 1) 6 (begin, 3) 12 (begin, 5)
2 (W, 1, A, 50, 20) 7 (W, 3, A, 20, 30) 13 (W, 5, E, 50, 30)
3 (begin, 2) 8 (CKP, {2, 3}) 14 (commit, 2)
4 (W, 2, B, 10, 20) 9 (W, 2, C, 5, 10) 15 (W, 3, B, 20, 30)
5 (commit, 1) 10 (begin, 4) 16 (commit, 4)

11 (W, 4, D, 5, 30)

Figure 9.11 and Figure 9.12 show the actions to be performed in the rollback
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and rollforward phases of the restart procedure.

rollback

LSN Operation Lr Lu Action

16 (commit, 4) {4} {} no action
15 (W, 3, B, 20, 30) {4} {3} undo: B = 20
14 (commit, 2) {4, 2} {3} no action
13 (W, 5, E, 50, 30) {4, 2} {3, 5} undo: E = 50
12 (begin, 5) {4, 2} {3} no action
11 (W, 4, D, 5, 30) {4, 2} {3} no action
10 (begin, 4) {4, 2} {3} no action

9 (W, 2, C, 5, 10) {4, 2} {3} no action
8 (CKP, {2, 3}) {4, 2} {3} no action
7 (W, 3, A, 20, 30) {4, 2} {3} undo: A = 20
6 (begin, 3) {4, 2} {} Lu is empty, end of phase

Figure 9.11: Actions during the rollback phase

rollforward

LSN Operation Lr Action

9 (W, 2, C, 5, 10) {4, 2} redo: C = 10
10 (begin, 4) {4, 2} no action
11 (W, 4, D, 5, 30) {4, 2} redo: D = 30
12 (begin, 5) {4, 2} no action
13 (W, 5, E, 50, 30) {4, 2} no action
14 (commit, 2) {4} no action
15 (W, 3, B, 20, 30) {4} no action
16 (commit, 4) {} Lr is empty, end of phase

Figure 9.12: Actions in the rollforward phase

In the case of media failure, that is of the loss of the database but not of the log, a
cold restart is performed through the following steps:

– The most recent database backup is reloaded.
– A rollback phase is performed on the log, until the DUMP record, that marks the

time in which the normal operations are restarted after the backup, to find the
identifiers of the transaction successfully terminated.

– A rollforward phase is performed to update the copy of the database, by redoing
the updates of the transactions terminated with success from the time of the backup
to that of the failure.

9.8 The ARIES Algorithm *

ARIES (Algorithm to Recovery and Isolation Exploiting Semantics) is a general re-
covery algorithm of the type Undo-Redo to reduce logging overhead, and minimize
recovery time from transaction, system and media failures. ARIES has been designed
for the IBM DB2 system and it is used by other commercial systems. Its complete
description is outside the scope of this text, but it is well presented in the literature
on the subject and has been used for the transaction management in the JRS system,
with a Java implementation.
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ARIES generalizes the solutions previously described to take into account the fol-
lowing important aspects.

Write in the log only the description of the operation. Until now, for sim-
plicity, we have supposed that a page update requires the writing of the entire page
and the storing of its before and after images in the log file. However, transactions
actually update records of the database and in the log only a description of the oper-
ations is written (operation logging or logical logging) together with the information
necessary to perform an undo or a redo of the update. For instance, if a field of a
record is modified, it is necessary to write only the old and new version of that field,
in addition to the description of the operation.

Store a part of the log in the buffer. Until now we assumed that each record
of the log is immediately written to the permanent memory. However, for reasons of
performance, the log pages contain more than one record, and a part of temporary
memory is reserved as a log buffer. Each page of the log remains in the buffer until
it is full. This of course does not prevent the writing of the page to the permanent
memory, even if not full, after an explicit request.

Since a record of the log can stay around in the buffer for some time, before its
transfer to the permanent memory, a system failure causes the loss of all the records
present in the log buffer. For this reason, it is necessary to take appropriate action so
that the undo and redo rules previously discussed are obeyed.

A new type of checkpoint. As discussed before, storing a checkpoint in the log
is equivalent to making a snapshot of the state of the DBMS. The checkpoint can
be taken in an asynchronous manner, by avoiding in this way the interruption of the
normal activity of the system, which can continue to execute transaction, and without
forcing the writing of the dirty pages to the permanent memory. A checkpoint of this
type is called a fuzzy checkpoint, and requires the use of two tables: the transaction
table, which contains information about the state and the operations of the transac-
tions, and the dirty pages table, in which each element contains information on the
pages modified in the buffer during normal processing. In this way, at any time it is
possible to know the list of the dirty pages in the buffer, and perform a checkpoint as
follows.

� Definition 9.17 Fuzzy checkpoint.

The checkpoint procedure performs the following actions:

1. Write a beginCKP record, to signal the beginning of the checkpoint pro-
cedure.

2. Build a endCKP record, by inserting in it the content of the transaction
table and the dirty pages table.

3. When the endCKP record is written to the permanent memory, the LSN
of the beginCKP record is stored in a file used in the restart procedure,
called the master record.

9.9 Summary

1. A transaction is a sequential program constituted by a set of read and write op-
erations to the database, and a set of operations in temporary memory, which the
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DBMS executes by guaranteeing the following properties: Atomicity, Isolation
and Durability.

2. The transaction and recovery manager controls the execution of the transactions
and guarantees their properties by writing the history of the updates performed on
the database to a log, and providing appropriate algorithms to undo the updates, in
the case of transaction failures, and redo all of them, in the case of system failures.

3. The recovery managers differ according to the way in which they use the redo and
undo algorithms.

4. The checkpoint is another item of information stored in the log with the aim of
reducing the part of the log that must be examined during the restart phase after
a system failure. Different methods have been studied to store the information
relevant to the checkpoint in order to reduce the restarting time.

5. ARIES is the most popular undo-redo algorithm for the management of transac-
tions.
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stein et al., 1987], that is downloadable for free from the Phil Bernstein’s home page.
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and in the books [Ramakrishnan and Gehrke, 2003; Silberschatz et al., 2010].

Exercises

Exercise 9.1 Define the concepts of transaction, of transaction failure and system
failure. Describe the algorithm NoUndo-Redo.

Exercise 9.2 Consider a DBMS that uses the recovery algorithm Undo-Redo. Which
of the following statements are true? Briefly justify your answers.

(a1) All the updates of a transaction must be transferred to the database before the
successful termination of the transaction (i.e. before the commit record is written
to the log).

(a2) All the updates of a transaction must be transferred to the database after the
successful termination of the transaction (i.e. after the commit record is written
to the log).

(a3) The updates of a transaction may be transferred to the database before or af-
ter the successful termination of the transaction (i.e. before or after the commit
record is written to the log).

(b1) The updates of a transaction must be transferred to the database before their
before-images have been previously written to the log in the persistent memory.

(b2) The updates of a transaction must be transferred to the database after their
before-images have been previously written to the log in the permanent memory.

(b3) The updates of a transaction may be transferred to the database before or after
their before-images have been previously written to the log in the permanent
memory.

Exercise 9.3 Describe the NoUndo-Redo algorithm and how the commit and the
abort are implemented.
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Exercise 9.4 Consider the following log records, assuming that A, B, C and D
are the pages with integer values. Assume the log entries are in the format (W, Trid,
Variable, Old value, New value).

(BEGIN T1)
(W, T1, A, 20, 50)

(BEGIN T2)
(W, T2, B, 20, 10)
(COMMIT T2)

(CKP, {T1})
(W, T1, C, 10, 5)

(BEGIN T4)
(W, T4, D, 30, 5)

(COMMIT T1)
SYSTEM FAILURE

Suppose that the transactions are managed with the Undo-Redo algorithm, and the
checkpoint with the Buffer-consistent checkpoint – Version 1. Show the actions made
with the system restart.

Exercise 9.5 Consider the following log records from the start of the run of a
database system, and suppose that the transactions are managed with the Undo-Redo
algorithm, and the checkpoint with the Buffer-consistent checkpoint – Version 1.

1) (BEGIN T1)
2) (W, T1, A, 25, 50)
3) (W, T1, B, 25, 250)
4) (BEGIN T2)
5) (W, T1, A, 50, 75)
6) (W, T2, C, 25, 55)
7) (COMMIT T1)
8) (BEGIN T3)
9) (W, T3, E, 25, 65)

10) (W, T2, D, 25, 35)
11) (CKP {T2,T3})
12) (W, T2, C, 55, 45)
13) (COMMIT T2)
14) (BEGIN T4)
15) (W, T4, F, 25, 120)
16) (COMMIT T3)
17) (W, T4, F, 120, 150)
18) (COMMIT T4)

Assume the log entries are in the format (W, Trid, Variable, Old value, New value). What
is the value of the data items A, B, C, D, E on F on disk after the restart if the
system crashes

1. just before line 10 is written to disk.
2. just before line 13 is written to disk.
3. just before line 14 is written to disk.
4. just before line 18 is written to disk.
5. just after line 18 is written to disk.
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Chapter 10

CONCURRENCY
MANAGEMENT

When transactions are executed concurrently, their operations on the database are
interleaved, i.e. the operations of a transaction may be performed between those of
others. This can cause interference that leaves the database in an inconsistent state.
The Concurrency Manager is the system module that ensures the execution of con-
current transactions without interference during database access.

10.1 Introduction

The classic example of interference during the execution of concurrent transactions
is that which causes the loss of updates.

Let us assume that John and Jane have a joint savings account and both go to dif-
ferent tellers. The current balance is 500¤. Jane wishes to add 400¤ to the account.
John wishes to withdraw 100¤. Let us assume that the events happen in the order in
which they are shown in Figure 10.1, in which ri[x] (or wi[x]) means that transaction
i reads (or writes) the database element x. At the end of these operations the saving
account contains 900¤, instead of 800¤. Although both transactions are completed
properly, the effect of T2 is canceled when T1 ends, and this certainly is not a correct
way to allow more than one person to use the same account.

T1 T2

begin
r1[x]

begin
r2[x]

x := x− 100
x := x+ 400

w2[x]
w1[x]

commit
commit

Figure 10.1: Execution of transactions with loss of updates
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In this example, the error is caused by the interleaved execution of operations belong-
ing to different transactions. To avoid this and other problems, the concurrent execu-
tion of transactions must be controlled, and in particular the way that their database
operations are interleaved.

We assume that each transaction is consistent, i.e. when it executes in isolation, it
is guaranteed to map consistent states of the database to consistent states. A simple
way to avoid interference among concurrent transactions is to execute them one after
another. i.e. to allow only a serial execution of them.

� Definition 10.1 Serial Execution
An execution of a set of transactions T = {T1, . . . , Tn} is serial if, for every
pair of transactions Ti and Tj , all the operations of Ti are executed before
any of the operations of Tj or vice versa.

If the initial database state is consistent and reflects a real-world state, then the serial
execution of a set of consistent transactions preserves these properties. Unfortunately,
serial executions are impractical from a performance perspective. In general, since
concurrency means interleaved executions of transactions, it is sufficient that the sys-
tem guarantees that the resulting execution will have the same effect as serial ones.
Such executions are called serializable.

� Definition 10.2 Serializable Execution
An execution of a set of transactions is serializable if it has the same effect
on the database as some serial execution of the transactions that commit.

The aborted transactions are not considere because it is assumed the transactions are
atomic and then the updates of aborted transactions are undone.

Since the serial executions are correct and each serializable execution has the same
effect of a serial one, also serializable executions are correct. The execution shown
in Figure 10.1 is not serializable. In fact, both serial executions (T1, T2) and (T2, T1)
produce the same effect, which is different from that of the execution in the example,
where in particular is lost the update of T2.

The DBMS module that controls the concurrent execution of transactions is called
the Concurrency Manager or Scheduler. There are many scheduling algorithms to
obtain serializability.

In the following sections, we will present some elements of the theory of serializ-
ability, a mathematical tool that allows us to prove whether a given scheduler is cor-
rect. The theory uses a structure called history (or schedule) to represent the chrono-
logical order in which the operations of a set of concurrent transactions are executed,
and defines the properties that a history has to meet to be serializable [Bernstein et al.,
1987].

10.2 Histories

From the point of view of a DBMS a transaction Ti starts with a begin, then continues
with a (possible empty) partially ordered sequence of read (ri[x]) and write (wi[x])
operations on the database, and terminates either with an abort (ai) or a commit (ci)
operation. A transaction that terminates with an abort does not update the database
(atomicity). If a transaction commits, then all its updates are stored persistently (dura-
bility).

To simplify the presentation, we will make the following additional assumptions:
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– The database is a fixed set of independent records that can only be read or updated,
i.e. we do not consider several collections of record and operations of insertion or
deletion of records (therefore, the write operation wi[x] means the update of x).
We will consider the general case in Section 10.6.

– A transaction reads and updates a specific record at most once. The results that
will be shown do not depend on this assumption and can be extended easily to the
general case, by indicating the operations of Ti with rij [x] (or wij [x]), instead of
ri[x] (or wi[x]), and revising the definitions that will be given later.

Example 10.1
The transaction defined by the program

program T;
var x, y:integer;
begin

x := read(x);
y := read(y);
x := x+y;
write(x);

end;
end {program}.

is seen by the DBMS as the sequence of operations: r1[x], r1[y], w1[x], c1. The
operation index identifies an execution of the program and differs from those of
other programs.

To treat formally the concurrent execution of a set of transactions {T1, T2, . . . , Tn},
the concept of history is used. A history indicates the relative order of execution of
operations belonging to T1, T2, . . . , Tn.

� Definition 10.3 History

Let T = {T1, T2,. . . , Tn} a set of transaction. A historyH on T is an ordered
set of operations such that:

1. the operation of H are those of T1, T2, . . . , Tn;
2. H preserves the ordering between the operations belonging to the same

transaction.

Intuitively, the history H represents the actual or potential execution order of the op-
erations of the transactions T1, T2, . . . , Tn. For example, Figure 10.2 shows a possible
history H1 of the set {T1, T2, T3}. Figure 10.3 shows the same history H1, with the
operations ordered from top to bottom; depending on the complexity of the history
we will use this notation or that of Figure 10.2.
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T1 = r1[x], w1[x], w1[y], c1
T2 = r2[x], w2[y], c2
T3 = r3[x], w3[x], c3

H1 = r1[x], r2[x], w1[x], r3[x], w3[x], w2[y], w1[y], c1, c2, c3

Figure 10.2: An example of history involving {T1, T2, T3}

T1 T2 T3

r1[x]
r2[x]

w1[x]
r3[x]
w3[x]

w2[y]
w1[y]
c1

c2
c3

Figure 10.3: Another representation of the history H1 in Figure 10.2

10.3 Serializable History

Before characterizing a serializable history, that is, the histories that represent seri-
alizable executions, it is necessary to define under which conditions two histories are
equivalent.

For equivalent histories we could mean that they produce the same effects on the
database, namely that the values written to the database by the committed transactions
are equal. Since a DBMS knows nothing of the computations made by a transaction
in temporary memory, a weaker notion of equivalence which takes into account only
the order of operations in conflict made on the database is preferred.

� Definition 10.4 Operations in conflict

Two operations of different transactions are in conflict if they are on the same
data item and at least one of them is a write operation.

The concept of operations in conflict allows to characterize three types of abnormal
situations that may arise during the concurrent execution of transactions.

1. Dirty Reads (Write-Read Conflict). Consider the following piece of a history:H =
. . . w1[x], r2[x], . . . The transaction T2 reads x updated by T1 which has not yet
committed. This type of read, called dirty read, can give rise to executions not
serializable. Consider the history of Figure 10.4 where T1 transfers 1000¤ from
account A to account B, when both have an initial balance of 2000¤, while T2
increases by 10% each account. The execution result is different from that one
produced by a serial execution of the two transactions.
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T1 T2

r1[A]
A := A− 1000

w1[A]
r2[A]

A := A+ 100
w2[A]
r2[B]

B := B + 200
w2[B]

commit
r1[B]

B := B + 1000
w1[B]

commit

Figure 10.4: Example of a dirty read

2. Unrepeatable Read (Read-Write Conflict). Consider the following piece of a his-
tory: H = . . . r1[x], w2[x], r1[x], . . . Transaction T2 writes a data x previously
read by the transaction T1, still active, which then rereads it getting a different
value even if in meanwhile T1 has not updated it. This effect obviously can not
be achieved by any serial execution of the two transactions.

3. Lost Update (Write-Write Conflict). Consider the following piece of a history:
H = . . . w1[x], w2[x] . . . The two transactions, while attempting to modify a data
item x, both have read the item’s old value before either of them writes the item’s
new value. No serial execution of the two transactions would lead to the same
result, as we have seen before (Figure 10.1).

Note that the presence of these conflicts is not a sufficient condition to bring the
database to an incorrect state, but it is better to avoid them due to the risk of having
non-serializable executions.

� Definition 10.5 Histories c-equivalent

Two historiesH1 andH2 are c-equivalent (conflict-equivalent), that is equiv-
alent with respect to operations in conflict, if

1. they are defined on the same set of transactions T = {T1, T2, . . . , Tn}
and have the same operations;

2. they have the same order of operations in conflict of transactions termi-
nated normally, i.e. for each pair of operations in conflict pi ∈ Ti, qj ∈
Tj such that ai, aj 6∈ H1, pi precedes qj in H1 if and only if pi precedes
qj in H2.

The condition (1) requires that the histories H1 and H2 contain the same set of op-
erations to be comparable, the condition (2) requires that H1 and H2 have the same
order of the operations in conflict of committed transactions. In particular, it follows
that, for any given x in H1,

1. if Ti executes ri[x] after Tj executes wj [x], the same is true in H2 (in both history
each read operation reads the value produced by the same write operation) and
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2. if Ti executes wi[x] before that Tj executes wj [x], the same is true in H2 (in both
schedule the last write operation are the same).

This definition of c-equivalence of histories is motivated by the fact that the result
of concurrent execution of T1, T2, . . . , Tn depends only on the order of execution
of operations in conflict. In fact, two operations not in conflict, for example two read
operations, have the same effect on the database regardless of their order of execution;
while the effect on the database of two conflicting operations depends on their order
of execution.

A history can be transformed into a c-equivalent one using the following property.

� Definition 10.6 Commutative Property
Two database operations oi and oj commute if, for all initial database states,
they (1) return the same results and (2) leave the database in the same final
state, when executed in either the sequence oi, oj or oj , oi.

Example 10.2
Let us consider the history in Figure 10.3, a c-equivalent history can be obtained
by a series of simple interchanges of commutative non-conflicting operations
of different transactions. For example, if we interchange r1[x] and r2[x] we
have another c-equivalent history. Continuing with this process we can move
the operations w2[y] and c2 before the operations of T3 and T1 obtaining the
c-equivalent history of Figure 10.5.

T1 T2 T3

r2[x]
w2[y]

r1[x]
w1[x]

r3[x]
w3[x]

w1[y]
c1

c2
c3

Figure 10.5: History H2 c-equivalent to history H1 of Figure 10.3

The historyH3 in Figure 10.6 is not c-equivalent to the historyH1 in Figure 10.3
because the operations in conflict w1[y] and w2[y] are in a different order and
the cannot be interchanged.

T1 T2 T3

r1[x]
r2[x]

w1[x]
r3[x]
w3[x]

w1[y]
w2[y]

c1
c2

c3

Figure 10.6: History H3 non-c-equivalent to the history H1 in Figure 10.3
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Other types of equivalence between history have been proposed. The reader may refer
to the texts listed in the references for further study. Although the equivalence with
respect to operations in conflict may be more restrictive than others, hence allowing
less concurrency, it is the most interesting from a computational point of view and
has been very successful in DBMSs implementation.

A serial history represents an execution in which there is no interleaving of the
operations of different transactions. Each transaction is completely executed before
the next one starts.

We can now define a stronger condition that is sufficient to ensure that a history is
serializable, called c-serializability (conflict-serializability), adopted by commercial
systems.

� Definition 10.7 Conflict Serializability
A history H on the transactions T = {T1, T2, . . . , Tn} is c-serializable if it
is c-equivalent to a serial history on T1, T2, . . . , Tn.

Let us consider the three transactions in Figure 10.2. A serial history is T1, T2, T3.
A history non-serial but c-serializable is H2 in Figure 10.5. In fact, the operations
w1[y] and c1 can be moved before those of T3 obtaining the serial history T2, T1, T3
in Figure 10.7. A history both non-serial and non-c-serializable is H3 in Figure 10.6.

T1 T2 T3

r2[x]
w2[y]
c2

r1[x]
w1[x]
w1[y]
c1

r3[x]
w3[x]
c3

Figure 10.7: Serial history c-equivalent to the history H2 in Figure 10.5

Because of the assumption that the data can only be read or updated, but not inserted
or deleted, the following property holds:

Each c-serializable history is serializable, but there are serializable histories
that are not c-serializable.

For example, the history in Figure 10.8 is equivalent to the serial one T1, T2, T3,
because in both cases T1 reads the same data item, and the final value of x is that
written by T3, but the history is not c-equivalent to the serial one T1, T2, T3 because
the write operations in T1 and T2 are in a different order.

Serialization Graph

Although it is possible to examine a history H and decide whether or not it is c-
serializable using the commutativity and reordering of operations, there is another
simpler way to proceed based on the analysis of a particular graph derived from H ,
called serialization graph.
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T1 T2 T3

r1[x]
w2[x]
c2

w1[x]
c1

w3[x]
c3

Figure 10.8: History serializable but non-c-serializable

� Definition 10.8 Serialization Graph

Let H a history of committed transactions T = {T1, T2, . . . , Tn}. The seri-
alization graph of H , denoted SG(H), is a directed graph such as:

– There is a node for every committed transaction in H .
– There is a directed arc from Ti → Tj(i 6= j) if and only if in H some

operation pi in Ti appears before and conflicts with some operation pj in
Tj .

We say that two transactions Ti and Tj conflicts if Ti → Tj appears in
SG(H).

The serialization graphs of the histories H2 and H3 in Figure 10.5 and and 10.6 are
shown in Figure 10.9.

T2 T3

T1

(a) GS(H2)

T2 T3

T1

(b) GS(H3)

Figure 10.9: Serialization graphs of H2 and H3

� Theorem 10.1 C-Serializability Theorem

A history H is c-serializable if and only if its serialization graph GS(H) is
acyclic.

Proof

(⇒) Assume that H is c-serializable and c-equivalent to a serial history Hs.
If there is an arc Ti → Tj in SG(H), there is a operation in Ti that appears
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before and conflicts with some operation in Tj inH . SinceH is c-equivalent
to Hs, Ti strictly precedes Tj in Hs. Suppose that in SG(H) exists a cycle
T1 → . . .→ Tk → T1, it follows the absurd that in Hs every transaction T1,
. . ., Tk strictly precede itself. Therefore, cycles cannot exist in SG(H).

(⇐) Assume that there are m transactions T1, . . . , Tm in H . If SG(H) is
acyclic, there is a topological order of the transactions in the graph as fol-
lows.1 Since the graph is acyclic, there is at least a node Ti without incoming
arcs. Then Ti is added to the serial history Hs and removed from the graph.
Then the process is repeated on the graph as long as exists a node. By con-
struction, no arc in the graph is directed toward a transaction already in Hs

and so the order in which the transactions are listed is serial. �

In Figure 10.9, the graph SG(H2) only is acyclic and thenH2 only is c-serializable. A
serial schedule where transactions appear in an order consistent with arcs of SG(H2)
is T2, T1, T3, as was seen in Figure 10.7, which is obtained by a topological order of
SG(H2).

10.4 Serializability with Locking

From the analysis of the serialization graph it can be verified a posteriori if a history
is c-serializable. Histories and serialization graphs, however, are abstract concepts,
and during the execution of a set of transactions, the serialization graph is not con-
structed. Conversely, the c-serializability theorem is used to prove that the scheduling
algorithm for the concurrency control used by a scheduler is correct, i.e. that all his-
tories representing executions that could be produced by it are c-serializable.

10.4.1 Strict Two-Phase Locking

There are many scheduling algorithms to obtain serializability; a very simple one
is the strict two-phase locking protocol (Strict 2PL), very popular in commercial
systems.

The idea behind locking is intuitively simple. Each data item used by a transaction
has a lock associated with it, a read (shared, S) or a write (exclusive, X) lock, and
Strict 2PL protocol follows two rules (Figure 10.10):

1. If a transaction wants to read (respectively, write) a data item, it first request a
shared (respectively, exclusive) lock on the data item.

Before a transaction Ti can access a data item, the scheduler first examines the
lock associated with the data item. If no other transaction holds the lock, then the
data item is locked. If, however, another transaction Tj holds a lock in conflict,
then Ti must wait until Tj releases it.

2. All locks held by a transaction Ti are released together when Ti commits or aborts.

The following notation, called a compatibility matrix, is used for describing lock-
granting policies: a row correspond to a lock that is already held on an element x by

1. A topological order of an acyclic directed graph G is any order of the nodes of G such that for
every arc a → b, node a precedes node b in the topological order. We can find a topological order
for any acyclic directed graph by repeatedly removing nodes that have no predecessors among the
remaining nodes. For a given G, there may exist several topological orders.
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Transaction duration

No of locks

Begin End

Release lock

Obtain lock

Period of
data item use

Figure 10.10: Strict two-phase locking protocol

another transaction, and the columns correspond to the mode of a lock on x that is
requested:

S X

S Yes No
X No No

A strict two-phase locking protocol is so named because for each transaction there is
a first phase in which it requests locks, and a second phase in which it releases locks.
Requests to acquire and release locks are automatically inserted into transactions by
the Transaction Manager module of the DBMS.

Lock and unlock requests are handled by the scheduler with the use of a data struc-
ture called Lock Table, an in-memory hash table of lock entries. An entry contains the
identifier of the data item being locked (the lock table key), the type of lock granted
or requested, a list of transactions holding lock, a queue of lock requests. When a
lock request arrives, it is handled atomically and added to the end of the queue of
requests for the data item, and granted if it is compatible with all earlier locks.

The following theorem shows the importance of Strict 2PL.

� Theorem 10.2
A Strict 2PL protocol ensures c-serializability.

Proof

Suppose not. Let H be a Strict 2PL history non c-serializable. Then by
the serializability theorem, the serialization graph SG(H) has cycle Ti1 →
Ti2 → · · · → Tip → Ti1 . Then Ti1 released a lock before Ti2 obtained some
lock; Ti2 released a lock before Ti3 obtained some lock, and so on. Finally,
Tip released a lock before Ti1 obtained some lock. Therefore, Ti1 released a
lock before Ti1 obtained some lock, contradicting the assumption that Ti1 is
Strict 2PL locked. �

Another important property holds:
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The set of Strict 2PL histories is a proper subset of the c-serializable histo-
ries.

For example, the history in Figure 10.11 is c-serializable — the serialization graph
(T3 → T1 → T2) is acyclic and the history is c-equivalent to the serial one (T3, T1, T2)
— but could not have been generated using the Strict 2PL protocol.

T1 T2 T3

r1[x]
w1[x]

r2[x]
w2[x]

r3[y]
w1[y]
c1

c2
c3

Figure 10.11: History c-serializable that cannot be generated by a Strict 2PL
protocol

10.4.2 Deadlocks

Two-phase locking is simple, but the scheduler needs a strategy to detect deadlocks.
Consider a situation in which transaction Ti has locked item A and needs a lock on
item B, while at the same time transaction Tj has locked item B and now needs a
lock on item A. A deadlock occurs because none of the transactions can proceed.

Deadlock Detection. A strategy to detect deadlocks uses a wait-for graph in
which the nodes are active transactions and an arc from Ti to Tj indicates that Ti is
waiting for a resource held by Tj . Then a cycle in the graph indicates that a deadlock
has occurred, and one of the transactions of the cycle must abort.

Once a deadlock has been detected, the standard method to decide which transac-
tion to abort is to choose the “youngest” transaction by some metric. For example, the
transaction with the newest timestamp, or the transaction that holds the least number
of locks, etc.).

Although the check for cycles requires a linear complexity algorithm with respect
to the number of nodes of the graph, the actual cost of the management of the graph
in real cases may discourage the use. For example, a system with a workload of 100
transactions per second, each of which reads 10 pages and lasts 10 seconds, has to
manage a graph of 1 000 nodes and 10 000 requests for locks by the 1 000 active
transactions. For this reason in commercial systems the existence of a wait cycle may
be controlled at predetermined time intervals, or even the wait-for graph is not build,
but the timeout strategy is used: if a transaction has been waiting too long for a
lock, then the scheduler simply presumes that deadlock has occurred and aborts the
transaction.

Deadlock Prevention. Another approach to deal with deadlocks is to use a lock-
ing protocol that disallows the possibility of a deadlock occurring as follows.
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Each transaction Ti receives a timestamp ts(Ti) when it starts: Ti is older than Tj if
ts(Ti) < ts(Tj). Moreover, to each transaction is assigned a priority on the basis of
its timestamp: the older a transaction is, the higher priority it has.

When a transaction Ti requests a lock on a data item that conflicts with the lock
currently held by another active transaction Tj , two algorithms are possible:

1. Wait-die (or non-preemptive technique):

if Ti is older than Tj

then Ti waits until Tj terminates
else Ti dies (aborts);

Therefore, an older transaction waits only for a younger one, otherwise the younger
dies. With this method, once a transaction has acquired a lock, it will never be
aborted (preempted) by a higher priority transaction.

2. Wound-wait (or preemptive technique):

if Ti is older than Tj

then Ti wounds (aborts) Tj

else Ti waits until Tj terminates;

Therefore, an older transaction wounds a younger one to take its lock, otherwise
the younger waits for the older one. This method use a preemptive technique,
and a lower priority transaction is killed when interferes with a higher priority
transaction.

In both methods, when an aborted transaction Ti is restarted, it has the same prior-
ity it had originally, i.e. it restarts with the same timestamp. The methods have the
following property.

� Theorem 10.3
Both the Wait-Die and Wound-Wait methods do not create deadlocks.

Proof
Let us show that cycles cannot exist in the wait-for graphs, which are not
constructed. In fact, suppose that the active transactions are T1, T2 and T3,
and the following cycle exists T1 → T2 → T3 → T1. Let T2 the older
transaction.
With the method wait-die a transaction can only wait for a younger one, and
therefore it is not possible that T1 → T2.
With the method wound-wait a transaction can only wait for an older one,
and therefore it is not possible that T2 → T3.
Thus the cycle cannot exist and then deadlocks cannot be created. �

Another interesting property is that when the methods need to choose between two
transactions which one to abort, it is always preferred the younger one, because it has
probably done less work, and therefore it is less costly to abort. Moreover, the aborted
transaction is restarted again with the same value of the time stamp, and therefore it
sooner or later will become the oldest transaction and will not be interrupted (no
starvation)

However, the behavior of the two methods is very different:
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– With the method wound-wait a transaction T can wait for data locked by an older
transaction or restarts a younger one Ty.
The most likely case is the first and then the method favors the waiting rather than
restarting. In addition, when the younger transaction Ty restarts, and it requests the
data locked by the older one T , it waits.

– With the method wait-die a transaction T can wait for data locked by a younger
transaction or it restarts due to an older one To.
The most likely case is the second and then the method favors the restarting rather
than waiting. Furthermore, when the transaction T restarts, and requests the data
locked by the older To, it must restart. However, the work of T to undo for a restart
should be less than that of Ty of the previous case, because the conflict arises when
it requests a lock on the data and not when the transaction is operating on the data
previously locked.

Compared with the deadlock detection solution, the deadlock prevention methods are
easier to implement, but some transactions are needlessly aborted while they would
run without restarts using the technique of deadlock detection.

The deadlock detection solution is usually preferred because, statistically, the dead-
lock conditions are much less frequent than the conditions involving the aborts and
restarts of transactions with the other methods.

10.5 Serializability without Locking

The methods of concurrency control with the use of locks, presented above, are based
on the fact that whenever a transaction attempts to perform a database operation, it
must request a permission. However, the transactions can commit at any time without
requesting permission. For this reason, the methods are called pessimistic because are
based on the idea that a bad thing is likely to happen: the accesses that transactions
make to the database are likely to conflict.

Other methods, called optimistic, have been studied for concurrency control which,
instead, do not lock data because are based on the idea that bad things are not likely to
happen: the accesses that transactions make to the database are not likely to conflict.
However, when a transaction requests to commit, the system controls that no bad
thing has happened. Let us show one of them and for further details refer to the
references cited in the bibliographic notes.

Snapshot Isolation. With this method a transaction can perform any database
operation without requesting permission, and taking advantage of multiversions of
each data item. However, the transactions must request permission to commit. For
this reason, the method is called optimistic.

The solution is used by Oracle, and other commercial systems, and has the follow-
ing rules:

– Reads and writes are performed without the use of locks on data.
– Each transaction Ti reads the data of the database version (snapshot) produced by

all the transactions that committed before Ti starts, but no effects are seen of other
concurrent transactions (two transactions are concurrent if one starts with its own
version of the database while the other is active).

– The writings of a transaction Ti are collected in the write set WSi and they are
visible by Ti but not by other concurrent transactions.
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– If a transaction T1 makes some writes, then it can commit only if another concur-
rent transaction T2 does not exist such that (a) T2 committed and (b ) T2 updated
a data item that T1 also updated (WS1 ∩WS2 6= ∅). Otherwise T1 aborts. This is
called the “First-Committer-Wins” rule.

This solution is unfortunately also called serializable, but the following example shows
that snapshot isolation permits non-serializable executions.

Suppose that a bank manages two joint accounts x and y, each with an initial
balances of 100, and the following business rule hold, not specified in the database
schema: the sum of the balances satisfies the condition x+ y ≥ 0.

Suppose that there are two concurrent transactions T1 and T2; T1 is withdrawing
150 from account x while T2 is withdrawing 150 from account y. T1 and T2 begin
by computing the total balance of accounts x and y and find that balance to be 200.
200 > 150, so each transaction believes that a 150 withdrawal is permissible, and
produce the history of Figure 10.12. The history is not c-serializable for the cycle
T1 → T2 → T1, but it is possible if the transactions are executed with the snapshot
technique, even if the end result is a negative total balance of −100 violating the
condition x+ y ≥ 0!

T1 T2

r[x = 100]
r[y = 100]

r[x = 100]
r[y = 100]
w[y = −50]

c
w[x = −50]

c

Figure 10.12: History with the snapshot technique

A review of the snapshot technique to make it c-serializable is given in [Cahill et al.,
2008; Fekete et al., 2005].

10.6 Multiple-Granularity Locking *

The concurrency control techniques seen so far, based on the idea of a single record
lock, is not sufficiently general to treat transactions that operate on collections of
records. For example, if a transaction has to update all the records of a table, with
the techniques seen each record must be locked while it would be sufficient to lock
exclusively the entire table. On the other hand, if a transaction needs to update one
record, it should not be required to lock the entire table, since otherwise concurrency
is not possible.

For these reasons other techniques have been developed based on the idea that the
data to lock can have different granularities (database, table, page, and record) and
among them is defined an inclusion relationship: a database contains a set of tables,
each table contains a set of pages, each page contains a set of records (multiple-
granularity locking).

The inclusion relation between data can be thought of as a tree of objects where
each node contains all its children. If a transaction gets an explicit S or X lock on a
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node, then it has an implicit lock in the same lock mode on all the descendants of that
node.
To manage locks on data of different granularity, the S and X locks are not enough,
but new lock types are introduced, called intention locks. If a data is locked in
an intention mode, explicit locking is being done at a finer granularity. Multiple-
granularity locking requires that before a node is explicitly locked, a transaction must
first have a proper intention lock on all the ancestors of that node in the granularity
hierarchy.

The intention lock types are the following:

– IS (intentional shared lock) allows requestor to explicitly lock descendant nodes
in S or IS mode.

– IX (intentional exclusive lock) allows requestor to explicitly lock descendants in
S, IS, X , IX or SIX mode.

– SIX (shared intentional exclusive lock) implicitly locks all descendants of node in
S mode and allows requestor to explicitly lock descendant nodes in X , SIX, or IX
mode.

The need of the SIX lock is justified by the the following considerations. Consider a
transaction that wants to read a table and then update a small subset of the records.
Without the SIX lock such transaction would have to own both an S and a IX lock
on the table. Since this situation occurs frequently, the two lock type, S and IX on a
table are combined into one, the SIX, to simplify the lock manager.

The compatibility matrix for the lock types is as follows:

S X IS IX SIX

S Yes No Yes No No
X No No No No No
IS Yes No Yes Yes Yes
IX No No Yes Yes No
SIX No No Yes No No

To deal with multiple granularity locks, it is necessary extend the Strict 2PL protocol
with new rules, obtaining the protocol called Multi-granularity Strict 2PL:

1. A node (which is not the root) can be locked by a transaction Ti in S or IS mode
only if the parent is locked by Ti in IS or IX mode.

2. A node (which is not the root) can be locked by a transaction Ti in X , IX or SIX
mode only if the parent is locked by Ti in SIX or IX mode.

Note that the multiple-granularity protocol requires that the locks be acquired from
the root of the hierarchy down to the level where it was made the request, whereas
locks must be released in the reverse order.

10.7 Locking for Dynamic Databases *

So far we have considered only transactions that read or update existing records in
the database. In reality, transactions can also insert or delete records into tables with
indexes. These possibilities raise new problems to be solved to ensure serializability
during the concurrent execution of a set of transactions, while continuing to adopt
the Strict 2PL protocol. Let us first consider the case of insertions and deletions, and
then how to take into account the presence of indexes.
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Insertion and Deletion. Consider the following cases:

1. The transaction T1 reads all records with attribute A1 = 100 of table F1. Under
the assumption that the lock is at the record level, T1 obtained prior blocks S on
records that reads. This means that if the records with attribute A1 = 100 are
found with a table scan, the transaction must lock as S all the table; if instead
the records are selected with an index, only them will be locked. In both cases,
the locking of the records currently present in the table does not prevent another
transaction T2 to insert a new record r with attribute A1 = 100 into the table,
because the lock X that transaction T2 needs on r is not incompatible with any
lock held by T1. When T2 terminates and releases all locks, then if T1, before
terminating, reads again all records with attribute A1 = 100, it gets a different
result because of r. This execution is not serializable because does not guarantee
a repeatable read of all records with A1 = 100.

2. The transaction T3 deletes a record with the attribute A1 = 100 from table F1.
The question arises whether a record that no longer exists should be kept locked,
and how. If T3 takes no X lock on the deleted record, another transaction T4 that
wants to read all records withA1 = 100 could see the deletion of the record before
the termination of T3, then making a dirty read of the records with A1 = 100. On
the other hand, if T3 holds a lock X on the deleted record, the transaction T4 that
requires S locks on the records that must read, would be waiting to obtain a lock S
on a record deleted without his knowledge and then, once T3 terminates releases
all locks, T4 after getting the lock would have to read a non-existent record.

The inserted or deleted records are called phantoms because they are records that
appear or disappear from sets, that is are invisible only during a part of a transac-
tion execution. There is no record blocking solution to solve the phantom problem. A
solution is predicate locking, a locking scheme in which locks are acquired by spec-
ifying a predicate: two operations conflicts if at least one of them is a write and the
set of records described by their predicates have non-null intersections.

The problem with predicate locking is that it is both difficult to implement, and can
have a disastrous impact on performance. So few commercial systems implement it,
if any. Instead an acceptable practical solution to this problem is index locking. When
a set of records that match some predicate is locked, the database system also checks
to see if there is an index whose key matches the predicate. If such an index exists,
the structure of the index should allow us to easily lock all the pages in which new
tuples that match the predicate appear or will appear in the future.

The practical issue of how to locate the relevant pages in the index that need to be
locked and what locks need to be acquired is discussed in the following section.

Concurrency Control in B+–trees The concurrent use of a B+–tree index
by several transactions may be treated in a simple way with Strict 2PL protocol, by
considering each node as a granule to lock appropriately. This solution, however,
would lead to a low level of concurrency due to locks on the first tree levels. A better
solution is obtained by exploiting the fact that the indexes are used in a particular way
during the operation.

In the case of a search, the nodes visited to reach the leaves, where the data is
located, are locked in reading during the visit and unlocked as soon as the search
proceeds from one node to the child.

In the case of an insertion, during the visit of the tree when switching from one
node A to a child B not full, the locks on A can be released because a possible
propagation of the effect of the insert into a leaf stops at node B, called a safe node.

A node is safe for a delete operation if it is at least half full.
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The general case with node splits, merging and balancing is more complex and sev-
eral tree locking techniques have been proposed.

10.8 Summary

1. The concurrency manager is the module of the system that ensures the execution of
concurrent transactions without interference. An execution of a set of transactions
is said to be serializable if it produces the same effect on the database as that
obtainable by serially performing the only transactions terminating normally in
some order. The scheduler controls the concurrent execution of transactions to
only allow serializable executions.

2. The serializability theory is a mathematical tool that allows one to prove whether
a given scheduler is correct. The theory uses a structure called history to represent
the concurrent execution of a set of transactions and defines the properties that a
history has to meet to be serializable.

3. Two histories are equivalent with respect to operations in conflict if they involve
the same operations of the same transactions terminated normally, and every pair
of conflicting operations is ordered the same way. A history is c-serializable if it
is c-equivalent to a serial history. To determine if a history is c-serializable it is
tested whether the serialization graph is acyclic.

4. The most common scheduler used by commercial DBMS is based on the Strict
2PL protocol, which releases all locks only when a transaction ends. The DBMS
components involved with concurrency control are the Lock Manager, which was
previously called the Concurrency Manager, and the Storage Structure Manager.
While the Lock Manager uses appropriate internal data structures to deal with lock
and unlock requests, and to deal with deadlocks, the Storage Structure Manager
has the task of choosing from time to time the data to lock and to send the request
to the lock manager, before proceeding with the read and write operations on the
database. A deadlock is a cycle of transactions, all waiting for another transaction
in the cycle to release a lock. The techniques of deadlock detection are usually
preferred to those of deadlock prevention.

5. The concurrency control technique based on the idea of locks is not sufficiently
general to treat databases where transactions use tables and indexes. For this rea-
son, other techniques have been developed based on the idea of multiple gran-
ularity locking. If collections of records change for insertions and deletions, the
phantom problem must be solved.

6. An alternative technique to the locking of data, to ensure the serializability of con-
current transactions, is the optimistic control: data changes are made in a local area
and included in the database only if the operations have not violated serializability,
which is checked in a validation phase.
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Exercises

Exercise 10.1 Consider the following transactions and the history H:

T1 = r1[a], w1[b], c1
T2 = w2[a], c2
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T3 = r3[a], w3[b], c3
H = r1[a], w2[a], c2, r3[a], w1[b], w3[b], c3, c1

Answer the following questions:

1. Is H c-serializable?
2. Is H a history produced by a strict 2PL protocol?

Exercise 10.2 Consider the following transactions:

T1 = r1(X), r1(Y ), w1(X)
T2 = r2(X), w2(Y )

and the history H = r1(X), r2(X), r1(Y ) . . .

Show how the history can continue on a system that adopts the strict 2PL protocol.

Exercise 10.3 Consider the following transactions and the history H:

T1 = r1[a], w1[a], c1
T2 = r2[b], w2[a], c2
H = r1[a], r2[b], w2[a], c2, w1[a], c1

Answer the following questions:

1. Is H c-serializable?
2. Is H a history produced by a strict 2PL protocol?
3. Suppose that a strict 2PL serializer receives the following requests (where rl and
wl means read lock and write lock):

rl1[a], r1[a], rl2[b], r2[b], wl2[a], w2[a], c2, wl1[a], w1[a], c1

Show the history generated by the serializer.

Exercise 10.4 Consider the following history H of transactions T1, T2 and T3 ini-
tially arrived at time 10, 20, 30, respectively.

H = r3[B], r1[A], r2[C], w1[C], w2[B], w2[C[, w3[A]

We make the following assumptions:

1. A transaction requests the necessary lock (shared lock for read and exclusive lock
for write) on a data item right before its action on that item is issued,

2. If a transaction ever gets all the locks it needs, then it instantaneously completes
work, commits, and releases its locks,

3. If a transaction dies or is wounded, it instantaneously gives up its locks, and
restarts only after all current transactions commit or abort,

4. When a lock is released, it is instantaneously given to any transaction waiting for
it (in a first-come-first-serve manner).

Answer the following questions:

1. Is H c-serializable?
2. If the strict 2PL is used to handle lock requests, in what order do the transactions

finally commit?
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3. If the wait-die strategy is used to handle lock requests, in what order do the trans-
actions finally commit?

4. If the wound-wait strategy is used to handle lock requests, in what order do the
transactions finally commit?

5. If the snapshot strategy is used, in what order do the transactions finally commit?

Exercise 10.5 Consider the transactions:

T1 = r1[x], w1[x], r1[y], w1[y]
T2 = r2[y], w2[y], r2[x], w2[x]

1. Compute the number of possible histories.
2. How many of the possible histories are c-equivalent to the serial history (T1, T2)

and how many to the serial history (T2, T1)?

Exercise 10.6 The transaction T1 precedes T2 in the history S if all actions of
T1 precede actions of T2. Give an example of a history S that has the following
properties:

1. T1 precedes T2 in S,
2. S is c-serializable, and
3. in every serial history c-equivalent to S, T2 precedes T1.

The schedule may include more than 2 transactions and you do not need to consider
locking actions. Please use as few transactions and read or write actions as possible.

Exercise 10.7 Assume the transactions are managed with the undo-redo algorithm,
the concurrency mechanism used is strict 2PL protocol, there are only read and write
locks, and the checkpoint method used is the Buffer-consistent – Version 1.

Assume the log contents shown below (the sequence is ordered left to right, top to
bottom) when a system failure occurs. Assume the log entries are in the format (W,
Trid, Variable, Old value, New value) and for simplicity the variables are pages with an
integer value:

( BEGIN T1 ) ( W, T1, X, 5, 10 ) ( BEGIN T2 )
( W, T2, X, 10, 20 ) ( COMMIT T1 ) ( W, T2, Y, 30, 60 )
( CKP {T2} ) ( W, T2, W, 35, 70 ) ( BEGIN T3 )
( W, T3, Z, 60, 40 ) ( COMMIT T2 )

1. Is it possible for the log to have the above contents? Explain briefly. If the answer
is yes, give a possible sequence of actions of a possible schedule based on the log.
If the answer is no, remove the first “impossible” log entry and repeat the process
until you get a possible sequence of log entries.

2. For the sequence of entries you got in the previous point, what are the possible
values ofX , Y ,W and Z after the last of these records is written to the permanent
memory and before recovery.
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Chapter 11

IMPLEMENTATION OF
RELATIONAL OPERATORS

This chapter begins the analysis of problems that arise in the implementation of the
Query Manager, one of the critical components in any database system. The focus is
on the algorithms for evaluating relational algebra operations, and on how to estimate
both their execution cost and result size. The next chapter will show how the query
optimizer uses these results to choose a query execution plan.

11.1 Assumptions and Notation

To simplify the presentation, we will study the problem under certain restrictive as-
sumptions about the physical data organization, the cost model, the selectivity factor
of the selection conditions and the available statistics. A simple database schema
used for the examples is also presented.

11.1.1 Physical Data Organization

Let us assume that each relation has attributes without null values, and it is stored in
a heap file, or with the primary organization index sequential.

To make the operations on relations more efficient, indexes on one or more at-
tributes are used. The indexes are organized as a B+–tree and those for non-key
attributes are inverted indexes, with sorted RID lists. We also distinguish two types of
indexes: clustered and unclustered.

A clustered index is built on one or more attributes of a relation sorted on the index
key. With a B+–tree index, accessing the data with a scan of the leaf nodes does
not involve repeated access to the same relation page. A relation can only have one
clustered index.

An unclustered index is built on one or more attributes which are not used to sort
a relation. With a B+–tree index, unlike the previous case, accessing the data with
a scan of the leaf nodes causes random access to the relation pages, which can be
visited more than once at different times.1

1. In the DBMS literature there is no uniform terminology. Sometimes an index built on the primary
key is called a primary index, regardless of whether or not it is a clustered index, while sometimes
the index is called primary when it is clustered, even if it is not built on the primary key. Similarly,
secondary indexes can be those built either on non-unique attributes, or on a primary key which is
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11.1.2 Physical Query Plan Operators

The query optimizer has the task of determining how to execute a query in an “op-
timal” way, by considering the physical parameters involved, such as the size of the
relations, the data organization and the presence of indexes. The problem is partic-
ularly difficult because, as we will see later, each relational algebra operator can be
implemented in different ways and the query optimizer must use appropriate strate-
gies to estimate the costs of the alternatives and choose the one with lowest cost.

The algorithm chosen by the optimizer to execute a query is represented as a tree
(physical query plan or physical plan). The nodes of this tree are physical operators,
each of which is a particular implementation of an operator of the relational algebra
extended on multisets (bags) as follows to model SQL queries:

– Projection with duplicates: πbX(O), with X attributes of O.
– Duplicate elimination: δ(O).
– Sorting: τX(O), with X attributes of O.

The operator is used to represent the SQL ORDER BY clause, and it returns a list of
records, rather than a multiset. The operator is meaningful as the root of a logical
plan only.

– Multiset union, intersection and difference: O1 ∪b O2, O1 ∩b O2, O1 −b O2.
If an element t appears n times in O1 and m times in O2, then

– t appears n+m times in the multiset union of O1 and O2:

{1, 1, 2, 3} ∪b {2, 2, 3, 4} = {1, 1, 2, 3, 2, 2, 3, 4}

– t appears min(n,m) times in the multiset intersection of O1 and O2:

{1, 1, 2, 3} ∩b {2, 2, 3, 4} = {2, 3}

– t appears max(0, n−m) times in the multiset difference of O1 and O2:

{1, 1, 2, 3} −b {1, 2, 3, 4} = {1}

The extension of the other operators (selection, grouping, product, join) from sets to
multisets is obvious.

Each DBMS has its own physical operators and, for simplicity, we will consider
those of the JRS system.

For each physical operator we estimate the data access cost C and the cardinality
of its result Erec.2

Physical operators, like the operators of relational algebra, return collections of
records with a type that depends on the operator.

Physical Query Plan Execution. Physical operators are implemented as itera-
tors that produce the records of the result one at a time on request. An iterator behaves
as an object with state, and methods like:

not used to sort the file.

2. The number of pages of a physical operator result W is estimated as

Npag(W ) =

⌈
Erec ×

∑n
i=1 L(Ai)

Dpag

⌉
where A1, A2, . . . , An are the W attributes.
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open Initializes the process of getting records: initializes the state and calls the
open function of all its operands.

isDone Tests if the iterator has more data to return.
next Returns the next result record.
reset Re-initializes the iterator already open.
close Performs some clean-up operations and ends the iterator.

A plan with root Plan is executed according to the scheme:

Plan.open();
while not Plan.isDone() do

print(Plan.next());
Plan.close();

For example, the statement Plan.next() produces the following actions in the case of
the physical plan in Figure 11.1:

Project
({Name})

NestedLoop
(StudentNumber=Candidate)

Filter
(Province= ′PI′)

TableScan
(Students)

Filter
(Course= ′BD′ ANDGrade= 30)

TableScan
(Exams)

Figure 11.1: Example of a physical query plan

1. The root Project operator requests a record to its operand, which implements the
join with the NestedLoop operator.

2. NestedLoop requests

(a) a record to the left operand, the operator Filter, which in turn requests a record
to the operator TableScan until a record satisfying the condition is found;

(b) a record to the right operand, which in turn requests a record to its operand,
and so on. If the record obtained satisfies the join condition, it belongs to the
result, otherwise the request is repeated, and so on.

In the DBMS literature, the technique is referred to as a pipeline, and the way in
which the physical query plan is executed is called demand driven.

Physical operators are either blocking or non-blocking. A blocking operator, when
is opened, must call next exhaustively on its operands before returning its first (or
next) record (e.g. the sort operator).

11.1.3 Cost Model

The cost estimate C of executing a physical operator is the number of pages read
from or written to the permanent memory to produce the result. For example, a scan
of the file R costs C = Npag(R). In the case of access through an index, the cost is:
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C = CI + CD

where CI is the cost of accessing an index pages to find the RIDs of the records that
satisfy the condition, while CD is the cost of accessing the data pages containing the
records. If a B+–tree index is used, the cost CI is usually approximated by the cost
of accessing the leaf nodes, ignoring the cost of the visit of the path from the root to
a leaf node.

11.1.4 Statistics

The values of each attribute are assumed to be uniformly distributed across its active
domain.

Regarding the distribution of records with a given value of an attribute, in the pages
of the file containing the relation, we distinguish two cases:

– The relation is sorted by that attribute, and therefore the records with the same
attribute value are physically adjacent.

– The relation is not sorted on that attribute and records with the same attribute value
are uniformly distributed in the pages of the file containing the relation.

We also assume that the distribution of values of an attribute in the relation records is
independent of the distribution of values of another attribute of the relation (uniform
distribution and independence between the values of different attributes). Finally, we
will assume that the database system catalog stores the following statistics informa-
tion:

1. For each relation R(A1, A2, . . . , An):

Nrec(R) the number of records in R.
Npag(R) the number of pages of R.
cR the average number of records in a page of R (Nrec(R)/Npag(R)).
Na(R) the number of attributes of R.
Lr(R) the size of a record of R in bytes.

2. For each attribute Ai:

LAi the average size of an Ai value.
Nkey(Ai) the number of Ai distinct values in R (Nrec(πAi(R))).
min(Ai) minimum and maximum Ai values.
max(Ai)

3. For each index I defined on one or more attributes, called the index key:3

Nkey(I) the number of distinct values of the index key.
min(I) the minimum and maximum values of the index key.
max(I)
Nleaf(I) the number of leaf nodes in the index.

As we will see, these statistics are the basic parameters on which the formulas of
the costs for the implementation of relational operators will be defined. In relational
systems, they are maintained in the system catalog and are used by the optimizer to
choose the best physical query plan.

3. The term index key should not be confused with relation key: the first refers to the attributes of the
index, the second to a key of the relation.
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The assumption that the distribution of an attribute values is uniform simplifies calcu-
lations but it is typically not valid. We will see how to improve accuracy if the system
can maintain histograms about the actual distribution of values.

The statistics in the catalog are updated periodically by an appropriate command,
such as UPDATE STATISTICS, which can be run by any user. As an example, see
the structure of the tables in the JRS catalog, which are some of those provided in
commercial systems.

A Database Schema for Examples. In the following examples of queries we
consider the schema:

R(PkR :integer, aR :string, bR :integer, cR :integer)
S(PkS :integer, FkR :integer, FkT :integer, aS :integer, bS :string, cS :integer)
T(PkT :integer, aT :int, bT :string)

Underlined attributes are the keys of the three relations.
Table 11.1 lists the physical parameters of the three relations, stored in a heap file

with pages of Dpag = 4 KB, with unclustered indexes on primary and foreign keys.

Table 11.1: Physical parameters

R S T

Nrec 40 000 100 000 20 000
Lr 50 B 40 B 20 B
Npag 500 1000 100
Nleaf(IPkR) 120
Nleaf(IPkS) 300
Nleaf(IPkT) 60
Nleaf(IFkR) 180
Nkey(IFkR) 40 000
Nleaf(IFkT) 140
Nkey(IFkT) 20 000

11.2 Selectivity Factor of Conditions

The selectivity factor of a condition, also called filter or reduction factor, is an esti-
mate of the fraction of records from a relation which will satisfy the condition. Let
us consider various cases of conditions and how to estimate their selectivity factors
using the approximations proposed for System R.

Simple Condition. We use the following notation:

– ψAi is a predicate on the attribute Ai of relation R.
– dom(Ai) is the set of Ai distinct values in R (Ai active domain).
– min(Ai),max(Ai) are the miminum and maximum value of Ai.
– v, vi are constants of any type.
– c, c1, c2 are numeric constants.

Assuming a uniform distribution of the Ai values in the records of R, the selectivity
factor of the predicates of interest is estimated as follows:4

4. In all the estimates of the selectivity factor of a predicate, the constants are those suggested by System
R in case of lack of information or for expressions with non-numeric attributes. For the use that we
make of these estimates no distinction is made between < and ≤ as well as between > and ≥.
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sf (Ai = v) =


1

Nkey(Ai)

1/10

sf (Ai > c) =



max(Ai)− c
max(Ai)−min(Ai)

if min(Ai) < c <

max(Ai)

0 if c ≥ max(Ai)

1 if c ≤ min(Ai)

1/3

sf (Ai < c) =



c−min(Ai)

max(Ai)−min(Ai)

if min(Ai) < c <

max(Ai)

0 if c ≤ min(Ai)

1 if c ≥ max(Ai)

1/3

sf (c1 < Ai < c2) =


c2 − c1

max(Ai)−min(Ai)

1/4

sf (Ai = Aj) =



1

max(Nkey(Ai), Nkey(Aj))

if dom(Ai)

⊆ dom(Aj)

∨ dom(Aj)

⊆ dom(Ai)

1

Nkey(Ai)

if only one of the

twoNkey(Ai)

is known

0
if dom(Ai)

∩dom(Aj) = ∅

1/10

sf (Ai ∈ { v1, . . . , vn }) =


n× sf (Ai = v) if less than 1/2

1/2

In the absence of information, the values of the constants are only intended to ex-
press that we assume a larger selectivity (and therefore less sf (ψAi)) for an equal-
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ity predicate; and a lesser selectivity (and therefore greater sf (ψAi)) for compar-
ison predicates. As in System R, we assume that the selectivity of the predicate
sf (Ai ∈ { v1, . . . , vn }) is not greater than 1/2.

Negation. The records satisfying the condition ¬ψ (s¬ψ) are those that do not
satisfy ψ:

s¬ψ = Nrec(R)− sψ

sf (¬ψ) = (Nrec(R)− sψ)/Nrec(R) = 1− sf (ψ)

Conjunction. The conjunctive condition ψ1 ∧ ψ2 ∧ · · · ∧ ψn is satisfied by the
records which satisfy all the conditions ψi. Assuming that the conditions ψi are inde-
pendent of each other:

sf (ψ1 ∧ ψ2 ∧ · · · ∧ ψn) = sf (ψ1)× sf (ψ2)× · · · × sf (ψn)

Disjunction. The disjunctive condition ψ1∨ψ2∨· · ·∨ψn is satisfied by the records
which satisfy at least one of the conditions ψi.

The disjunctive condition can be transformed with the De Morgan rules:

ψ1 ∨ ψ2 ∨ · · · ∨ ψn = ¬(¬ψ1 ∧ ¬ψ2 ∧ · · · ∧ ¬ψn)

and then, because of the two previous cases, and assuming that the conditions ψi are
independent of each other:

sf (ψ1 ∨ψ2 ∨ · · · ∨ψn) = 1− ((1− sf (ψ1))× (1− sf (ψ2))× · · · × (1− sf (ψn)))

In particular, in the case of disjunction of two conditions:

sf (ψ1∨ψ2) = 1−((1−sf (ψ1))×(1−sf (ψ2))) = sf (ψ1)+sf (ψ2)−sf (ψ1)×sf (ψ2)

Using Histograms

The selectivity factor of a predicate can be estimated more accurately by knowing the
actual distribution of the attribute values instead of assuming a uniform distribution
between the minimum and maximum values. For instance, let us consider a relation
E with 105 records, and two cases of distribution for an integer-valued attribute A
that takes values in the range 17 to 31 (Figure 11.2).

The selectivity factor of the predicate A > 29 is estimated 2/14 = 0.1428 under
the assumption of uniform distribution, and 5/105 = 0.0476 given the actual distri-
bution. The advantage of uniform distribution is that it requires storing in the catalog
only three values (min(A), max(A) and Nrec), while the actual distribution is more
expensive to store. The solution preferred by the DBMSs is to use a histogram of
values as an approximation of the actual distribution.
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(a) Uniform distribution
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Figure 11.2: Uniform and nonuniform distributions of values

The histogram can be of different types and the most used one is the Equi-Height:
the active domain of the attribute A is divided into k intervals containing a number
of records of about Nrec/k (Figure 11.3).
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Figure 11.3: Equi-Height histogram

Example 11.1
Let us see how to use histograms to estimate the selectivity of a predicate. Let
hi, i = 1..k, the k histogram intervals of A values. For each of them are known

1. the minimum and maximum value (min(hi), max(hi)),
2. the number of records (Nrec(hi)) and
3. the number of attribute values (Nkey(hi)).

The selectivity factor of a predicate on A is estimated as sf (ψA) =
Nrec(ψA)/Nrec, withNrec(ψA) an estimate of the number of records that satisfy
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the predicate. Let us see some estimation of Nrec(ψA), with c, c1 and c2 three
A values:

1. Nrec(A = c) =
Nrec(hi)

Nkey(hi)
, if c ∈ hi.

2. Nrec(c1 ≤ A ≤ c2) = (c2−c1+1)× Nrec(hi)

Nkey(hi)
, if c1 ∈ hi∧c2 ∈ hi (partial

range).
3. Nrec(c1 ≤ A ≤ c2) = Nrec(hi), if c1 = min(hi) ∧ c2 = max(hi) (total

range).
4. If c1 and c2 belong to different histogram intervals, the estimate ofNrec(c1 ≤
A ≤ c2) is calculated by adding the estimates for the total and partial ranges
concerned.

Let us estimate the selectivity factor of the following predicates on the attribute
A of the relation E with 105 records.

1. sf (A = 18)

(a) Actual distribution.

sf (A = 18) = 2/105 = 0.019

(b) Uniform distribution.

sf (A = 18) = 1/15 = 0.0666

(c) Equi-Height histogram. The value 18 is in the histogram interval [17, 21]
with 26 records.

sf (A = 18) = Nrec(hi)/(Nkey(hi)×Nrec) = 26/(5× 105) = 0.0495

2. sf (21 ≤ A ≤ 27)

(a) Actual distribution.

sf (21 ≤ A ≤ 27) = 69/105 = 0.6571

(b) Uniform distribution.

sf (21 ≤ A ≤ 27) = 7/15 = 0.4667

(c) Equi-Height histogram. The range 21 ≤ A ≤ 27 is partially contained
in the histogram intervals [17, 21] with 26 records and [27, 31] with 26
records, and fully contained in the intervals [22, 23] with 27 records and
[24, 26] with 26 records.

sf (21 ≤ A ≤ 27) = (1× 26/5 + 1× 26/5 + 27 + 26)/105 = 0.6038
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11.3 Physical Operators for Relation (R)

The records of a relation can be retrieved with any of the following operators, which
have a relation R as an argument, and so they can only be a leaf of a physical query
plan.

TableScan(R)
The operator returns the records of R, in the order that they are stored, and has the
cost

C = Npag(R)

SortScan(R, {Ai})
The operator returns the records of R sorted in ascending order on the attribute {Ai}
values. For simplicity, we ignore the possibility of also specifying for each attribute
a DESC clause to sort in descending order.

Sorting is done with the merge sort algorithm. In general, the operator’s cost de-
pends on theNpag(R) value, the number of pagesB available in the buffer (sort heap
size), and the implementation of merge sort.

If the merge sort is implemented so that it returns the final result of the merge
without first writing it to a temporary file (piped merge sort), then the cost of SortScan
is

C =


Npag(R) if Npag(R) < B

3×Npag(R) if Npag(R) ≤ B × (B − 1)

Npag(R) + 2×Npag(R)× dlogB−1(Npag(R)/B)e otherwise

For simplicity, in the following examples we assume that Npag(R) ≤ B × (B − 1),
and so the sorting requires at most one merge phase. This assumption is realistic with
current and expected sizes of the main memory of computers.

IndexScan(R, I)
The operator returns the records of R sorted in ascending order on the attribute {Ai}
values of the index I , with a cost that depends on the type of index and the type of
attribute on which it is defined.

C =


Nleaf(I) +Npag(R) if I is clustered

Nleaf(I) +Nrec(R) if I is on a key of R, otherwise

Nleaf(I) +Nkey(I)× Φ(dNrec(R)/Nkey(I)e, Npag(R))

IndexSequentialScan(R, I)
The operator returns the records of R, stored with the primary organization index
sequential I , sorted in ascending order on the primary key values, with the cost

C = Nleaf(I)

Estimating the cardinality of the result. In all the cases the cardinality of the
result is

Erec = Nrec(R)
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11.4 Physical Operator for Projection (πb)

The physical operator that implements projection, without duplicate elimination, has
as first argument the records returned by O, another physical operator.

Project(O, {Ai})
The operator returns the records of the projection of the records of O over the at-
tributes {Ai}, with the cost

C = C(O)

If the argument O of the physical operator is a relation indexed on the projected
attributes {Ai}, the projection can have a more efficient evaluation by means of fol-
lowing operator.

IndexOnlyScan(R, I, {Ai})
The operator returns the sorted records of πb{Ai}(R) using the index I on the attributes
{Ai}, without accessing the relation, with the cost

C = Nleaf(I)

The index can also be used if it is defined on a set of attributes that contains {Ai}
as a prefix. The result is without duplicates if the attributes {Ai} include a relation
key, otherwise, if a tuple of values for the attributes {Ai} is associated to n different
RIDs, it is returned n times.

Estimating the Cardinality of the Result. The cardinality of the result is esti-
mated as follows.

– Project(O, {Ai})

Erec = Erec(O)

– IndexOnlyScan(R, I, {Ai})

Erec = Nrec(R)

11.5 Physical Operators for Duplicate Elimination (δ)

The physical operators for duplicate elimination have as argument the records re-
turned by O, another physical operator.

Distinct(O)
The records of O must be sorted so that duplicates will be next to each other. The
operator returns the records of O sorted, without duplicates, i.e. it converts a multiset
to a set, with the cost

C = C(O)
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HashDistinct(O)
The operator returns the records of O without duplicates using a hash technique.

Let us assume that the query processor has B + 1 pages in the buffer to perform
duplicate elimination. There are two phases that use two different hash functions h1,
h2: partitioning and duplicate elimination.

In the partitioning phase, for each record of O the hash function h1 is applied to
all attributes to distribute the records uniformly in the B pages. When a page i is full,
it is written to the Ti partition file. At the end of the partitioning phase we have a
partition of the records of O in B files, each of which contains a collection of records
that share a common hash value (Figure 11.4). Possible duplicates are in the same
partition. Let us assume that each partition has at most B pages.

BufferInput file

...

Partitions

...

Output

1

2

...

B

Input

1

2

B

h1

Figure 11.4: Partitioning Phase

In the duplicate elimination phase, the process becomes an intra-partition problem
only: each Ti partition is read page-by-page to eliminate duplicates with the hash
function h2 applied to all record attributes. A record r is discarded only when it col-
lides with another record r′ with respect to h2, and r = r′. The remaining record are
included in the result. Then the contents of the B pages is cleared, and the duplicate
elimination is applied to the records of the next partition.

If the number of pages of a partition is greater than B, the hash-based projection
technique is applied recursively by dividing the partition into subpartitions, and this
degrades performance.

The operator has the cost

C = C(O) + 2×Npag(O)

From this analysis follows that the elimination of duplicates with this technique has
the same cost of Distinct with the sorting of the operand records, and has the disad-
vantage of not producing a sorted result. However, the performance of HashDistinct
can be improved with another technique, called hybrid hashing, to exploit extra buffer
space to keep in memory the first partition, without duplicates, during the partitioning
phase rather than saving it.

Estimating the Cardinality of the Result. The cardinality of the Distinct(O)

and HashDistinct(O) result is estimated as follows.

– If Ai is the only O attribute, with Nkey(Ai) distinct values, then

Erec = Nkey(Ai)
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Projection in DBMS. To eliminate duplicates, Informix uses hashing.
DB2, Oracle and Sybase ASE use sorting. Microsoft SQL Server and Sybase
ASIQ use both hashing and sorting. JRS uses sorting.

– If {A1, A2, . . . , An} are the O attributes, and Ai is an indexed attribute in R then
sf (Ai) = Nkey(Ai)/Nrec(R), otherwise sf (Ai) = 1/10:

Erec = dErec(O)×
∏

sf (Ai)e

11.6 Physical Operators for Sort (τ)

To sort the result of an operand O, the following operator is used.

Sort(O, {Ai})
As with the SortScan, we assume that the operator sorts the records of O on the
attributes {Ai} with the piped merge sort algorithm and B buffer pages. The cost is:

C =


C(O) if Npag(O) < B

C(O) + 2×Npag(O) if Npag(O) ≤ B × (B − 1)

C(O) + 2×Npag(O)× dlogB−1(Npag(O)/B)e otherwise

In the following we assume, for simplicity, that Npag(O) ≤ B × (B − 1), and so the
sorting requires at most one merge phase.

Estimating the cardinality of the result. The cardinality of the result is

Erec = Nrec(O)

.

11.7 Physical Operators for Selection (σ)

Physical operators for the selection are of different types: without the use of indexes
or with the use of one or more indexes.

Filter(O,ψ)
The operator returns the records of O satisfying the condition ψ, with the cost

C = C(O)

.
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IndexFilter(R, I, ψ)
The operator returns the records of R satisfying the condition ψ with the use of the
index I , defined on attributes of ψ. The condition ψ is a predicate or a conjunction of
predicates that only involve attributes in a prefix of the index search key. The result
is in the index search key sort order.

The operator does two things: it uses the index to find the sorted set of RIDs of the
records satisfying the condition, and then retrieves the records of R.

These two operations may be performed with two physical operators, as it happens
in commercial DBMSs:

– RIDIndexFilter(I, ψ), which returns a sorted set of RIDs, and
– TableAccess(O, R), which returns the records of R with the RIDs in O.

Here we combine the two operators into one — IndexFilter(R, I, ψ) — to simplify the
physical query plans.

The first argument of an IndexFilter is the relation R on which the index is defined,
therefore IndexFilter can only be a leaf of a physical query plan.

The operator has the cost

C = CI + CD

that depends on the type of index and the type of attribute on which it is defined.

– If the index is clustered

CI = dsf (ψ)×Nleaf(I)e

with sf (ψ) the fraction of the leaf nodes in the B+–tree which will be visited to
find the RIDs of records that satisfy the selection predicate.

CD = dsf (ψ)×Npag(R)e

since the access to data by means of the RIDs in the index results in an ordered
access to the relation pages, so a data page will not be visited more than once.

– If the index is unclustered

CI = dsf (ψ)×Nleaf(I)e

CD = NoListToVisit× NoPageToVisitForList

= dsf (ψ)×Nkey(I)e × Φ(dNrec(R)/Nkey(I)e, Npag(R))

where Φ is the Cardenas formula.
If the index is defined on a key of R

CD = dsf (ψ)×Nrec(R)e

IndexSequentialFilter(R, I, ψ)
The operator returns the sorted records of R, stored with the primary organization in-
dex sequential I , satisfying the condition ψ, a predicate or a conjunction of predicates
that involve only attributes of the index search key.

The operator has the cost

C = dsf (ψ)×Nleaf(I)e
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IndexOnlyFilter(R, I, {Ai}, ψ)
The operator returns the sorted records of πb{Ai}(σψ(R)), using only the index I . The
condition ψ is a predicate or a conjunction of predicates that only involve attributes
in a prefix of the index search key.

The operator has the cost

C = dsf (ψ)×Nleaf(I)e

The result is without duplicates if the attributes {Ai} include a relation key.

OrIndexFilter(R, {Ii, ψi})
The operator returns the records of R satisfying the disjunctive condition ψ = ψ1 ∨
ψ2 ∨ · · · ∨ ψn using all the indexes Ii, one for each term ψi.

The operator performs two operations: it uses the indexes to find a sorted union of
the RID lists of the records matching each terms ψi, and then retrieves the records of
R.

Let n be the number of indexes used, and CkI the access cost of the k-th index, we
obtain:

CI =

⌈
n∑
k=1

CkI

⌉
The number of data page accesses is calculated taking into account the estimated
number Erec of records to retrieve:

Erec = dsf (ψ)×Nrec(R)e

Since the union of the RID lists is sorted:

CD = Φ(Erec, Npag(R))

AndIndexFilter(R, {Ii, ψi})
The operator returns the records of R satisfying the conjunctive condition ψ = ψ1 ∧
ψ2 ∧ · · · ∧ ψn using the indexes Ii, one for each term ψi.

The operator performs two operations: it uses the indexes to find a sorted inter-
section of the RID lists of the records matching each terms ψi, and then retrieves the
records of R using the RIDs.

Let n be the number of indexes used, and CkI the access cost of the k-th index, we
obtain:

CI =

⌈
n∑
k=1

CkI

⌉
The number of data page accesses is calculated taking into account the estimated
number Erec of records to retrieve:

Erec = dsf (ψ)×Nrec(R)e

Since the intersection of the RID lists is sorted:

CD = Φ(Erec, Npag(R))
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Selection in DBMS. To make a conjunctive selection commercial DBMSs
use different algorithms for RID set intersection. Oracle uses bitmaps opera-
tions or a hash join (see below) of indexes on the values of the RID lists that
satisfy the selection condition. Microsoft SQL Server uses join indexes (see
below). DB2 uses Bloom filters. Sybase ASE uses one index only and does not
do RID set intersection, while Sybase ASIQ uses bitmap operations. Informix
does RID set intersection, JRS uses one index only.

To make a disjunctive selection, usually bitmaps are used. Oracle eliminates
the OR by rewriting the query using the IN or UNION operators.

Estimating the cardinality of the result. The cardinality of the result depends
on the kind of operators and on the selectivity factor of the condition sf (ψ):

Erec =

{
dsf (ψ)× Erec(O)e if the operator is Filter

dsf (ψ)×Nrec(R)e otherwise

Example 11.2
Let us consider the query
SELECT bR
FROM R
WHERE bR > 5 AND cR = 20
ORDER BY bR;

and the cost of some physical plans to execute it.

1. Let us assume that there is only one unclustered index on cR.

Sort
({bR})

Project
({bR})

Filter
(bR> 5)

IndexFilter
(R, IcR, cR= 20)

CSort = CO + 2×Npag(O)

= C IndexFilter + 2×
⌈
LbR × Erec(Filter)

Dpag

⌉
where:

sf (cR = 20) =
1

Nkey(IcR)

C IndexFilter = CI + CD
Erec(Filter) = dsf (cR = 20)× sf (bR > 5)×Nrec(R)e
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2. Let us assume that there are two unclustered indexes on bR and cR.

Sort
({bR})

Project
({bR})

AndIndexFilter
(R, {IcR, cR= 20}, {IbR, bR> 5})

CSort = CO + 2×Npag(O)

= CAndIndexFilter + 2×
⌈
LbR × Erec(Project)

Dpag

⌉
CAndIndexFilter = dsf (bR > 5)×Nleaf(IbR)e+ dsf (cR = 20)×Nleaf(IcR)e+

Φ(dsf (bR > 5 ∧ cR = 20)×Nrec(R)e, Npag(R))

Erec(Project) = Erec(AndIndexFilter) = dsf (bR > 5 ∧ cR = 20)×Nrec(R)e

3. Let us assume that there is only one unclustered index on {bR, cR}.

IndexOnlyFilter
(R, IbRcR, {bR}, bR> 5 ∧ cR= 20)

C IndexOnlyFilter = dsf (bR > 5 ∧ cR = 20)×Nleaf(IbRcR)e

11.8 Physical Operators for Grouping (γ)

The result of {Ai}γ{fi}(R) is a set of records with attributes {Ai, fi}, obtained as
follows.

The records of R are partitioned according to their values in one set of attributes
{Ai}, called the grouping attributes. Then, for each group, the values in certain other
attributes are aggregated with the functions {fi}. The result of this operation is one
record for each group. Each record has the grouping attributes, with the values com-
mon to records of that group, and an attribute for each aggregation, with the aggre-
gated value for that group.

To execute the grouping of the operand O result, the following physical operators
are used, which differ in the way the records of O are partitioned.

GroupBy(O, {Ai}, {fi})
The records of O must be sorted on the grouping attributes {Ai}, so that the records
of each group will be next to each other.
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The operator returns the records sorted on {Ai} and has the cost

C = C(O)

HashGroupBy(O, {Ai}, {fi})
The records of O are partitioned using a hash function on the attributes {Ai}, pro-
ceeding in two phases as in the case of the operator HashDistinct. In the partitioning
phase a partition is created using the hash function h1, while in the second phase, re-
named grouping, the records of each partition are grouped with the hash function h2
applied to all grouping attributes and the records of the result are returned: when two
records with the same grouping attributes are found, a step to compute the aggregate
functions is applied.

The result is not sorted on the grouping attributes {Ai} and the operator has the
cost

C = C(O) + 2×Npag(O)

Estimating the cardinality of the result. The cardinality of the result is esti-
mated as in the case of duplicate elimination.5

11.9 Physical Operators for Join (./)

We will consider here only the equijoin (OE
./
ψJ
OI) computed with one of the follow-

ing physical operators, where OE is the external operand, OI is the internal operand,
and ψJ the join condition. In general, the result is a multiset of records, and each of
them is the concatenation < r, s > of a record r of OE and one s of OI , that is they
have the attributes of both r and s.

NestedLoop(OE , OI , ψJ)
The operator can be used regardless of what the join condition is, and it computes the
join result with the following algorithm,

for each r ∈ OE do
for each s ∈ OI do

if ψJ then add < r, s > to the result;

The operator has the cost

CNL = C(OE) + Erec(OE)× C(OI)

The order of the loops matters.

Example 11.3
Let us consider two physical query plans to perform a join, withR or S external:

NestedLoop
(ψJ)

TableScan
(R)

TableScan
(S)

NestedLoop
(ψJ)

TableScan
(S)

TableScan
(R)

5. Note that δ(πb
A1,A2,...,An

(R)) is equivalent to A1,A2,...,Anγ(R).
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The cost of the two physical query plans are

Npag(R) +Nrec(R)×Npag(S)

Npag(S) +Nrec(S)×Npag(R)

The two quantities are in general different. Indeed, with R as external the fol-
lowing approximation holds

Npag(R) +Nrec(R)×Npag(S) ≈ Nrec(R)×
Npag(S)

Nrec(S)
×Nrec(S)

and with S as external the following approximation holds

Npag(S) +Nrec(S)×Npag(R) ≈ Nrec(S)×
Npag(R)

Nrec(R)
×Nrec(R)

Therefore, R as external is better if

Npag(S)

Nrec(S)
<
Npag(R)

Nrec(R)

namely whether the capacity of the relation pages are in the relationship cS >
cR, i.e. if R has the longest record.

Example 11.4
Let us consider the relations R and S stored in heap files with the following
characteristics:

Npag(R) = 500, Nrec(R) = 40 000, Nkey(IPkR) = 40 000
Npag(S) = 1000, Nrec(S) = 100 000, Nkey(IFkR) = 40 000

and the physical query plan

NestedLoop
(PkR=FkR)

Filter
(cR> 5)

TableScan
(R)

Filter
(aS= 100)

TableScan
(S)

Let us assume that sf (aS = 100) = 1/100 and sf (cR > 5) = 1/2. The plan has
the cost

CNL = C(OE) + Erec(OE)× C(OI)

= Npag(R) +Nrec(R)/2×Npag(S)

= 500 + 20 000× 1000 = 20 000 500
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The estimation of the plan cost shows that the NestedLoop does not benefit from
the fact that there is a selection on the result of the internal operand.

In this case we might think of another physical operator, called NestedLoop-
Mat, which computes the join result with the following algorithm:

The result of the internal Filter(O,ψ) is stored in a temporary file T ;
for each r ∈ OE do

for each s ∈ T do
if ψJ then add < r, s > to the result;

The estimated physical query plan cost will be quite different

CNLM = C(OE) + (C(O) +Npag(T )) + Erec(OE)×Npag(T )

CNLM = 500 + (1000 + 10) + 20 000× 10 = 201 510

PageNestedLoop(OE , OI , ψJ)
The cost of the nested loop join can be reduced considerably if, instead of scanning
the result of OI once per record of OE , we scan it once per page of OE with the
following algorithm:

for each page pr of OE do
for each page ps of OI do

for each r ∈ pr do
for each s ∈ ps do

if ψJ then add < r, s > to the result;

The operator has the cost

CPNL = C(OE) +Npag(OE)× C(OI)

If the operands are TableScan of R and S, the operator has the cost

CPNL = Npag(R) +Npag(R)×Npag(S)

while, exchanging the roles of R and S, we obtain:

CPNL = Npag(S) +Npag(S)×Npag(R)

The two formulas differ in the first term, and so the algorithm cost is lower when the
external relation is the one with fewer pages.

This method is better than the NestedLoop, being Npag(R) < Nrec(R), but it has
the defect of producing an unsorted result due to the ordered scanning of the external
relation.

BlockNestedLoop(OE , OI , ψJ)
The operator computes the join result by extending the PageNestedLoop with the use
of more memory for a group of pages of the external operand.

Let us assume that the operands are TableScan ofR and S, and the query processor
has B + 2 pages in the buffer to perform the join. B pages are used by the external
operand R, 1 page by the internal operand S (input page), and the last page is used
as output buffer. For each record r of a page group of R, and for each joining record
s of a page of S, the < r, s > is written to the output buffer page (Figure 11.5).
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./
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Figure 11.5: Block nested loop

The external relation R is read once with a cost Npag(R). The internal relation S is
read dNpag(R)/Be times with a cost Npag(S), and so the total cost is

CBNL = Npag(R) + dNpag(R)/Be ×Npag(S)

Again, the algorithm cost is lower when the external relation is the one with fewer
pages.

If the B pages are enough to contain one of the two relations, then the cost is
reduced to Npag(R) +Npag(S).

IndexNestedLoop(OE , OI , ψJ)
The operator requires that

– the join is an equi-join (ψJ = (OE .Ai = OI .Aj));
– the internal operand leaf is an IndexFilter(S, I, ψJ), with S a relation and I an index

on the join attribute Aj of S.

The operator computes the join result with the following algorithm:

for each r ∈ OE do
for each s ∈ IndexFilter(S, I, S.Aj = r.Ai) do

add < r, s > to the result;

The operator has the cost

C INL = C(OE) + Erec(OE)× (CI + CD)

where (CI + CD) is the cost to retrieve the matching records of S with a record of
OE , that depends on the index type (whether it is clustered or not) and on the fact
that the join attribute of S is a key or a foreign key, bearing in mind that the condition
is an equality predicate.

MergeJoin(OE , OI , ψJ)
The operator requires that

– the join is an equi-join (ψJ = (OE .Ai = OI .Aj));
– OE and OI records are sorted on the join attributes OE .Ai and OI .Aj ;
– in the join condition OE .Ai is a key of OE .
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Since the join attribute of OE has distinct values, the algorithm proceeds by reading
the records of both operands for increasing values of the join attribute only once
(Figure 11.6).

r := first record of OE ; // r = null if OE is empty
s := first record of OI ; // s = null if OI is empty
// let succ(w) the next record of w in W
// or the value null if w is the last one;
while not r == null and not s == null do

if r[Ai] = s[Aj ]
then(

add < r, s > to the result;
s := succ(s);

)
else r := succ(r);

Figure 11.6: Merge-join with join attribute a key of OE

The operator has the cost

CMJ = C(OE) + C(OI)

The result of the physical operators NestedLoop, IndexNestedLoop and MergeJoin is
sorted on the attributes of OE as the records of OE .

HashJoin(OE , OI , ψJ)
The operator computes the join result with a hash technique in two phases with the
algorithm in Figure 11.7.

// Partition R in B partitions, flushed as page fills.
for each r ∈ R do

add r to the page buffer h1(r[Ai]);
// Partition S in B partitions, flushed as page fills.
for each s ∈ S do

add s to the page buffer h1(s[Aj ]);
// Probing Phase
for i = 1,. . . ,B do (

// Build in the buffer the hash table for Ri

for each r ∈ group Ri do
add r to the hash table address h2(r[Ai]);

// Read Si and check if they join with those of Ri

for each s ∈ group Si do (
check the records in hash table address h2(s[Aj ]);
if r[Ai] = s[Aj ]
then add < r, s > to the result; )

Clear the hash table to deal with the next partition; )

Figure 11.7: Hash Join
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In the first phase, called partitioning (or building), the records of OE and OI are
partitioned using the function h1 applied to the join attributes, and it is similar to the
partitioning phase for the operator HashDistinct (Figure 11.4).OE records in partition
i will only match OI records in partition i.

In the second phase, called probing (or matching), for each Bi partition (a) the
records of OE are read and inserted into the buffer hash table with B pages using the
function h2 applied to the join attributes values; (b) the records of OI are read one
page at a time, and which of them join with those of OE is checked with h2, and they
are added to the result (Figure 11.8).

BufferPartitions

R

S

Join

...

Hash table for a partition of R

1 2 3 · · · B

Input S Output

h2

h2

Figure 11.8: Probing Phase of Hash Join

In the partitioning phase, the records of the operands are read and written with a cost

C(OE) + C(OI) +Npag(OE) +Npag(OI)

In the probing phase, assuming that the hash table for each partition of OE is held in
the buffer, each partition is read once with the cost

Npag(OE) +Npag(OI)

Therefore, the operator has a total cost

CHJ = C(OE) + C(OI) + 2× (Npag(OE) +Npag(OI))

From this analysis follows that HashJoin has the same cost of MergeJoin with the
sorting of the operand records. MergeJoin is a good choice if one or both operands
are already sorted non join attributes and the result is required to be sorted on join
attributes. The HashJoin performance can be improved with the hybrid hash join
technique to exploit extra buffer space to keep in memory the firstOE partition during
the partitioning phase rather than saving it. Similarly, while partitioning OI , rather
than write out the first partition, we can directly probe the in–memory table of the
first OE partition and write out the join result. Therefore, we avoid writing the first
partitions of OE and OI during the partition phase and reading them in again during
the probing phase.

Estimating the cardinality of the result. Since

R ./
ψJ
S = σψJ

(R× S)

the cardinality of the result is estimated as



148 CHAPTER 11 Implementation of Relational Operators c© 2015 by Albano et al.

Join in DBMS. The nested loop is used by all systems. Sybase ASE also
uses the index nested loop and the merge join, while Sybase ASIQ also uses
the page nested loop and the hash join; Informix, Oracle, DB2 and Microsoft
SQL Server use all the algorithms. JRS uses the page nested loop, the index
nested loop and the merge join.

Erec = dsf (ψJ)× Erec(OE)× Erec(OI)e

for the physical operators different from IndexNestedLoop, otherwise if the internal
operand is an IndexFilter(S, I, ψJ)

Erec = dsf (ψJ)× Erec(OE)×Nrec(S)e

while if the internal operand is a Filter(IndexFilter(S, I, ψJ), ψ)

Erec = dsf (ψJ)× Erec(OE)× (sf (ψ)×Nrec(S))e

Example 11.5
Let us consider the relations R and S stored in heap files with the following
characteristics:

Npag(R) = 500, Nrec(R) = 40 000, Nkey(IPkR) = 40 000, Nleaf(IPkR) = 120
Npag(S) = 1000, Nrec(S) = 100 000, Nkey(IFkR) = 40 000, Nleaf(IFkR) = 180

and let us estimate the join cost using different physical query plans.

1. NestedLoop

NestedLoop
(PkR=FkR)

TableScan
(R)

TableScan
(S)

CNL = C(OE) + Erec(OE)× C(OI)

= Npag(R) +Nrec(R)×Npag(S)

= 500 + 40 000× 1000 = 40 000 500

2. IndexNestedLoop

IndexNestedLoop
(PkR=FkR)

TableScan
(R)

IndexFilter
(S, IFkR, FkR=PkR)



c© 2015 by Albano et al. 11.9 Physical Operators for Join (./) 149

C INL = C(OE) + Erec(OE)× (CI + CD)

= Npag(R) +Nrec(R)×
(dNleaf(IFkR)/Nkey(IFkR)e+ Φ(dNrec(S)/Nkey(IFkR)e, Npag(S)))

= 500 + 40 000× (d180/40 000e+ dΦ(100 000/40 000, 1000)e)
= 160 500

Using S as external

IndexNestedLoop
(FkR=PkR)

TableScan
(S)

IndexFilter
(R, IPkR, PkR=FkR)

C INL = C(OE) + Erec(OE)× (CI + CD)

= Npag(S) +Nrec(S)× (CI + CD)

= 1000 + 100 000× (1 + 1) = 201 000

3. MergeJoin

MergeJoin
(PkR=FkR)

SortScan
(R, {PkR})

SortScan
(S, {FkR})

CMJ = C(OE) + C(OI)

= CSort(R) + CSort(S)

= 3×Npag(R) + 3×Npag(S) = 1500 + 3000 = 4500

4. HashJoin

HashJoin
(PkR=FkR)

TableScan
(R)

TableScan
(S)

CHJ = C(OE) + C(OI) + 2× (Npag(OE) +Npag(OI))

= 500 + 1000 + 2× (500 + 1000) = 4500

If the table R is small and all its records can be inserted into the hash table, the two
tables are read only once and the cost of the hash join becomes

CHJ = C(OE) + C(OI) = 500 + 1000 = 1500
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Example 11.6
Let us consider the relations R and S of the previous example and the query

SELECT aR, SUM(cR)
FROM R, S
WHERE PkR = FkR AND cR = 500 AND cS = 1000
GROUP BY aR
ORDER BY aR;

Let us estimate the cost of the following physical query plan:

GroupBy
({aR},{SUM(cR)})

Sort
({aR})

Project
({aR,cR})

IndexNestedLoop
(FkR=PkR)

IndexFilter
(R, IcR, cR= 500)

Filter
(cS= 1000)

IndexFilter
(S, IFkR, FkR=PkR)

CGroupBy = CSort = C IndexNestedLoop + 2×Npag(Project)

Npag(Project) = d(Erec(IndexNestedLoop)× (L(aR) + L(cR)))/Dpage
C IndexNestedLoop = C(IndexFilterOnR) + Erec(IndexFilterOnR)× C(Filter)

Erec(IndexNestedLoop) = dsf (PkR = FkR)× Erec(IndexFilterOnR)× Erec(Filter)e

where

sf (PkR = FkR) = 1/max{Nkey(PkR), Nkey(FkR)}
C(IndexFilterOnR) = CI + CD

CI = Nleaf(IcR)/Nkey(IcR)

CD = Φ(dNrec(R)/Nkey(IcR)e, Npag(R))

Erec(IndexFilterOnR) = dNrec(R)/Nkey(IcR)e
C(Filter) = CI + CD

CI = Nleaf(IFkR)/Nkey(IFkR)

CD = Φ(dNrec(S)/Nkey(IFkR)e, Npag(S))

Erec(Filter) = dsf (cS = 1000)×Nrec(S)e
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11.10 Physical Operators for Set and Multiset Union,
Intersection and Difference

Set operators are implemented with the following physical operators, with operands
of the same type:

Union(OE , OI), Except(OE , OI), Intersect(OE , OI)
The operators require that the records of the operands are sorted and without dupli-
cates. The operators have the cost

C = C(OE) + C(OI)

HashUnion(OE , OI), HashExcept(OE , OI), HashIntersect(OE , OI)
The operators use a hash technique by applying the same hash function to the results
of the two operands. The operators have the cost

C = C(OE) + C(OI) + 2× (Npag(OE) +Npag(OI))

Multiset operators are implemented with the following physical operators, with operands
of the same type:

UnionAll(OE , OI), ExceptAll(OE , OI), IntersectAll(OE , OI)
The operators have the cost

C = C(OE) + C(OI)

The algorithm to implement the multiset union is simple, while those to implement
the multiset difference and intersection are more complex and often are not supported
by commercial DBMSs, therefore when needed the query must be written in a differ-
ent way.

Estimating the cardinality of the result.
The Union size is estimated as the average of two extreme values: the sum of the sizes
of the two operands and the larger size of them. The value is the same as the larger
plus half of the smaller:

Erec(∪) = max(Erec(OE), Erec(OI)) + min(Erec(OE), Erec(OI))/2

The Except size is estimated as the average of the OE size and the OE −OI size

Erec(−) = Erec(OE)− Erec(OI)/2

The Intersect size is estimated as the average of two extreme values: 0 and the size of
the smaller operand

Erec(∩) = min(Erec(OE), Erec(OI))/2

The UnionAll size is the sum of the sizes of the two operands

Erec(∪b) = Erec(OE) + Erec(OI)

The ExceptAll and IntersectAll sizes are estimated as in the set operator cases.
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11.11 Summary

1. The relational algebra operators can be implemented with different algorithms
and costs. The choice of the best algorithm depends on the amount of data and the
selectivity of selection conditions.

2. The estimation of the selectivity of a condition depends on the physical parameters
stored in the system catalog. The hypothesis of uniform distribution and indepen-
dence between the values of different attributes may not be reasonable in many
cases and for this reason the systems maintain more precise information about the
type of distribution of values using histograms.

3. The operator for duplicate elimination can be implemented using sorting, hash
functions or an index. The selection operator with a conjunctive condition can be
implemented with a single index or multiple indexes. If the condition is a dis-
junction of simple conditions, the indexes can be used only if useful indexes are
available for each simple condition.

4. The join of two relations R and S is the most critical relational algebra operator
because it is used frequently and has a great impact on the cost of query execution.
For these reasons, many algorithms for implementing it have been studied, with a
cost which depends on the size of the relations involved and on the pages available
in the buffer. The nested loop evaluates the join condition for each pair of records
in R and S. Among the possible variants the more interesting is the index nested
loop that uses an index on the join attribute of internal relation. The merge join
exploits instead sortedness of the relations on the join attributes. The hash join
uses a hash function to partition first the records of R and S on the join attributes,
and then build pairs of joining records considering the partitions with the same
hash function value.

5. The set operators and the grouping can be implemented by exploiting the sorted-
ness of their operands or using a hash technique. The grouping operator, as well
as that for projection, can be implemented using an index only and thus avoiding
the cost of accessing the data pages to produce the result.

Bibliographic Notes

The implementation of the relational operators is discussed in all books cited in
Chapter 1, in particular [Garcia-Molina et al., 1999] and [Ramakrishnan and Gehrke,
2003]. A review of great interest is [Graefe, 1993]. For the use of histograms to esti-
mate the selectivity of the conditions see [Garcia-Molina et al., 1999].

Exercises

Exercise 11.1 Briefly answer the following questions:

1. Define the term useful index for a query.
2. Which relational algebra operators can be implemented with a sorting operator.
3. Describe an algorithm for the join implementation and give an estimate of its cost.
4. Compare two algorithms for the join implementation.
5. If the join condition is not equality, which join algorithms cannot be used?

Exercise 11.2 Consider the relation R(A,B,C,D) with key A and the following
SQL query. All the attributes have a type string of the same length.
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SELECT DISTINCT A, B FROM R;

1. Estimate the cost of a physical query plan without the use of indexes.
2. Estimate the cost of a physical query plan with the use of a clustered B+–tree

index on B.
3. Estimate the cost of a physical query plan with the use of an unclustered B+–tree

index on A.
4. Estimate the cost of a physical query plan with the use of a multi-attribute clus-

tered B+–tree index on A,B.

Exercise 11.3 Consider the relation R(A,B,C,D) with key A. All the attributes
have a type string of the same length.

Suppose that a B+–tree inverted index on C is available. Estimate the cost of a
physical query plan for the following SQL query:

SELECT ∗
FROM R
WHERE C BETWEEN ‘C1’ AND ‘C10’;

Exercise 11.4 Consider the relation R(A,B,C,D) with the attributes C and D
of type integer. Suppose there is a clustered inverted index on C and an unclustered
inverted index onD. Estimate the cost of an access plan for the following SQL query:

SELECT ∗
FROM R
WHERE C = 10 AND D = 100;

Exercise 11.5 Consider the relation R(K:int, A:int, B:int) organized as a sorted file on
the attribute A in Npag pages. R contains Nrec records. The attributes A and B have
Nkey(A) and Nkey(B) values.

Suppose that the following indexes are available:

1. An hash index on the primary key K.
2. Two B+–tree inverted indexes on A and B.

For each of the following relational algebra queries, estimate the cost of an access
plan to execute the queries with the use of only one index:

1. σ(K isin [k1; k2; k3]) AND (B = 10)(R)

2. σ(A = 100) AND (B = 10)(R).

Exercise 11.6 Consider the relations R(A,B), S(B,C), T (C,D) and the follow-
ing information about them:

Nrec(R) = 200, Nkey(R.A) = 50, Nkey(R.B) = 100
Nrec(S) = 300, Nkey(S.B) = 50, Nkey(S.C) = 50
Nrec(T ) = 400, Nkey(T.C) = 40, Nkey(T.D) = 100

For each of the following relational algebra queries, estimate the size of the results:

1. (σS.B=20(S)) ./ T ;
2. σR.A 6=S.C(R ./ S).
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Chapter 12

QUERY OPTIMIZATION

The Relational Engine of a DBMS manages the SQL commands for the following
operations: starting and ending a session; creating and deleting a database; creating,
deleting and modifying tables; creating and deleting indexes or views; granting and
revoking privileges on data; searching and modifying records of a table retrieved
with appropriate queries. In this chapter the focus is on query processing and on
how to find the best plan to execute a query. In particular, we study the optimizer
organization, a fundamental component of the Query Manager, which selects the
optimal physical plan to execute queries using the operators and data structures of
the Storage Engine. We will also show how functional dependencies, well known for
relational schema design, are also important for query optimization.

12.1 Introduction

In general there are several alternative strategies to execute a query, in particular when
it is complex, and the optimizer task is to find the best one. The problem falls into the
category of “difficult” problems and therefore the optimizer uses heuristic methods
to find a good solution quickly. The complexity of the problem is due to the fact that
(a) a query can be rewritten in several equivalent ways, and (b) a relational algebra
operator can be implemented with different physical operators.

The optimization can be dynamic or static. In the case of the interactive use of a
database, the optimization is always dynamic, that is, the physical plan is generated
at run time when a query is executed, taking into account information stored in the
system catalog concerning database statistics and the available data structures.

In the case of queries embedded in a program, the optimization can be either dy-
namic or static. In the first case the physical plan is generated when the query is
executed. In the case of a static optimization, the physical query plan is generated at
the program compilation time. Therefore, the optimization is performed only once,
regardless of the number of times that a query will be executed. A change of the
database physical design, for example an index is added or removed, may render a
physical query plan invalid and require a new optimization to be generated.

12.1.1 Query Processing Phases

Query processing proceeds in four phases:
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1. Query analysis, in which the correctness of the SQL query is checked, and the
query is translated into its internal form, which is usually based on the relational
algebra (initial logical query plan).

2. Query transformation, in which the initial logical plan is transformed into an
equivalent one that provides a better query performance.

3. Physical plan generation, in which alternative algorithms for the query execution
are considered, using the available physical operators to implement the operators
of the logical plan, and the physical query plan, also called a query plan, with the
lowest cost is chosen.

4. Query evaluation, in which the physical plan is executed.

The phases Query transformation and Physical plan generation are often called Query
optimizer. The physical plan generation phase makes query processing hard, because
there is a large number of alternative solutions to consider in order to choose the one
with the least estimated cost.

12.2 Query Analysis Phase

During the query analysis the following steps are performed:

1. Lexical and syntactic query analysis.
2. Semantic query analysis. During this step the system checks both the query seman-

tic correctness and that the user has appropriate privileges, taking into account the
definitions of the relations used and the authorizations contained in the system
catalog.

3. Conversion of the WHERE condition into conjunctive normal form.
4. Simplification of the condition by applying the equivalence rules of boolean ex-

pressions.
5. Elimination of contradictory conditions (e.g. A > 20 ∧ A < 18 ≡ false), by

possibly exploiting information about integrity constraints.
6. Elimination of operator NOT that precedes a simple condition, by rewriting it with

its complementary. For example, ¬(A > 20) ≡ A ≤ 20.
7. Generation of the internal representation of the SQL query as a logical plan, rep-

resented as an expression tree of relational algebra operators. Since SQL allows
relations with duplicates, we will consider the bag (also called multiset) versions
of the relational algebra operators. The user may request that duplicates be re-
moved from the result of an SQL query by inserting the keyword DISTINCT after
the keyword SELECT . For example, the query

SELECT PkEmp, EName
FROM Employee, Department
WHERE FkDept = PkDept AND

DLocation = ’Pisa’ AND ESalary = 2000;

is represented with the logical plan in Figure 12.1, with the projection operator
πb, which does not eliminate duplicates.

12.3 Query Transformation Phase

The main purpose of this phase is to transform a query in order to increase the possi-
bilities of optimizing its execution in the Physical plan generation phase.
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πb
PkEmp, EName

σDLocation=′Pisa′ ∧ESalary= 2000

./
FkDept = PkDept

Employee Department

Figure 12.1: A logical query plan

A logical plan is transformed into an equivalent one using a set of equivalence rules,
hereafter indicated, with the right hand side expression can be evaluated more effi-
ciently than the left hand side expression.

Equivalence rules

LetE be a relational algebra expression,X,Y be sets of attributes, ψX be a condition
on the attributes X , and XY be an abbreviation for X ∪ Y . The projection operator
under consideration is πb.

Example of equivalence rules are the following:

1. Cascading of selections

σψX
(σψY

(E)) = σψX∧ψY
(E)

2. Commutativity of selection and projection

πbY (σψX
(E)) = σψX

(πbY (E))

if X ⊆ Y , otherwise

πbY (σψX
(E)) = πbY (σψX

(πbXY (E)))

3. Commutativity of selection and join

σψX
(E1 ./ E2) = σψX

(E1) ./ E2

if X are attributes of E1.

σψX∧ψY
(E1 ./ E2) = σψX

(E1) ./ σψY
(E2)

if X are attributes of E1 and Y are attributes of E2.

σψX∧ψY ∧ψZ
(E1 ./ E2) = σψZ

(σψX
(E1) ./ σψY

(E2))

if X are attributes of E1, Y are attributes of E2 and Z are attributes of both E1

and E2.

4. Cascading of projections

πbZ(πbY (E)) = πbZ(E)

if Z ⊆ Y .
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5. Elimination of unnecessary projections

πbZ(E) = E

if Z are the attributes of E.

6. Commutativity of projection and join

πbXY (E1 ./ E2) = πbX(E1) ./ π
b
Y (E2)

whereX are attributes ofE1, Y are attributes ofE2 and the join condition involves
only attributes in XY .
If the join condition involves attributes not in XY , then

πbXY (E1 ./ E2) = πbXY (πbXXE1
(E1) ./ π

b
Y XE2

(E2))

where XE1 are attributes of E1 that are involved in the join condition, but are not
in XY , and XE2 are attributes of E2 that are involved in the join condition, but
are not in XY .

7. Commutativity of selection and grouping

σθ(Xγ F (E)) ≡ Xγ F (σθ(E))

where θ uses only attributes from X and F is a set of aggregate functions that
use only attributes from E. This equivalence is helpful because evaluation of the
right hand side avoids performing the aggregation on groups which are anyway
going to be removed from the result. Other interesting equivalences rules involving
grouping are discussed in Section 12.4.4.

Possible steps of an algorithm to transform a query are the following:

1. Selections are pushed below projections using rule 2.
2. Selections are grouped using rule 1.
3. Selections and projections are pushed below an inner join using rule 3 and rule 6.
4. Repeat the three steps above until it is possible.
5. Unnecessary projections are eliminated using rule 5.
6. Projections are grouped using rule 4.

In general, the result of this algorithm is an expression in which the selection and the
projection are executed as soon as possible, and the selection is ahead of projections.
In particular, in the case of expressions with a single join, the expression rewritten
has the form:

πbX1
(σψY1

(πbX2
(σψY2

(R)) ./ πbX3
(σψY3

(S))))

An example of transformation of the logical query plan in Figure 12.1 is shown in
Figure 12.2.
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πb
PkEmp, EName

σDLocation=′Pisa′ ∧ESalary= 2000

./
FkDept = PkDept

Employee Department

(a) Initial logical query plan

πb
PkEmp, EName

./
FkDept = PkDept

πb
PkEmp, EName, FkDept

σESalary= 2000

Employee

πb
PkDept

σDLocation= ′Pisa′

Department

(b) Transformed logical query plan

Figure 12.2: Query rewriting

DISTINCT Elimination

DISTINCT normally requires a physical plan with duplicate elimination, which often
involves an expensive Sort operation. Therefore it is worthwhile to identify a useless
DISTINCT , e.g. if a query result is without duplicates.

For simplicity, we assume that

– The database tables are without null values and are sets because have been defined
with keys.

– The FROM clause uses a set of tablesR, where no attribute appears in two different
tables.

– The condition C in the WHERE clause is a conjunctive normal form (CNF) of
predicates involving attributes of the tables inR.

– The SELECT clause uses the set of attributes A.
– The GROUP BY clause uses a set of grouping attributes which also appear in the

SELECT clause.

A SQL query with the DISTINCT clause is translated into a relational algebra expres-
sion with the projection operator πbA and the duplicate elimination operator δ.

To decide whether the operator δ for duplicate elimination is unnecessary we will
use a basic algorithm of functional-dependency theory for determining if an interest-
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ing functional dependency can be inferred from the set F of functional dependencies
which hold in the query result.
Let us briefly recall some basic properties of functional dependencies.

� Definition 12.1 Functional Dependency

Given a relation schema R and X , Y subsets of attributes of R, a functional
dependency X → Y (X determines Y ) is a constraint that specifies that for
every possible instance r of R and for any two tuples t1, t2 ∈ r, t1[X] =
t2[X] implies t1[Y ] = t2[Y ].

A peculiar example of functional dependency, that will be used
in the following, is ∅ → Y : it specifies that the value of Y is the
same for every tuple of an instance r of R.

Example 12.1
Let us consider the following relation containing information about students and
exams at the University of Pisa.

StudentsExams
StudCode Name City Region BirthYear Subject Grade University

1234567 N1 C1 R1 1995 DB 30 Pisa
1234567 N1 C1 R1 1995 SE 28 Pisa
1234568 N2 C2 R2 1994 DB 30 Pisa
1234568 N2 C2 R2 1994 SE 28 Pisa

Let us see if the following functional dependencies are properties of the meaning
of the attributes in the relation:

– StudCode→ Name, City, Region, BirthYear holds because each student code has
the same name, city, region and birth year.

– City→ Region holds because each city is in a region.
– StudCode, Subject → Grade holds because each students receive one grade in

each subject.
– ∅ → University holds because the data are only about students and exams at the

University of Pisa.
– Subject→ Grade does not hold because a subject may have different grades.
– Subject→ Subject is not useful because always holds, and it is called “trivial”.

Given a set F of functional dependencies, we can prove that certain other ones also
hold. We say these ones are logically implied by F .

� Definition 12.2 Logical Implication

Given a set F of functional dependencies on a relation schema R, another
functional dependency X → Y is logically implied by F if every instance
of R that satisfies F also satisfies X → Y :

F ` X → Y
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This property holds if X → Y can be derived by F using the following set
of inference rule, known as the Armstrong’s axioms:

(Reflexivity) If Y ⊆ X, then X → Y

(Augmentation) If X → Y, Z ⊆ T, then XZ → Y Z

(Transitivity) If X → Y, Y → Z, then X → Z

A simpler way of solving the implication problem follows from the following notion
of closure of an attribute set.

� Definition 12.3 Closure of an Attribute Set

Given a schema R < T,F >, and X ⊆ T , the closure of X , denoted by
X+, is

X+ = {Ai ∈ T |F ` X → Ai}

The closure of attributes is used in the following result.

� Theorem 12.1
F ` X → Y iff Y ⊆ X+

Thus testing whether a functional dependency X → Y is implied by F can be ac-
complished by computing the closure X+. The following simple algorithm can be
used to compute this set, although a more efficient and complex one exists.1

� Algorithm 12.1 Computing the Closure of an Attribute Set X

X+ = X;
while (changes to X+) do

for each W → V in F with W ⊆ X+ and V 6⊆ X+

do X+ = X+ ∪ V ;

Functional dependencies are commonly used to normalize a database schema, but in
the following we will show that they are also useful to reason about the properties of
a query result.

A set of functional dependencies F which hold in the result of a query with joins
and selections is found as follows:

1. Let F be the initial set of functional dependencies where their determinants are
the keys of every table used in the query.

2. Let C the condition of the σ operator. If a conjunct of C is a predicate Ai = c,
where c is a constant, F is extended with the functional dependency ∅ → Ai.

3. If a conjunct of C is a predicate Aj = Ak, e.g. a join condition, F is extended
with the functional dependencies Aj → Ak and Ak → Aj .

1. For an example see the application implemented by R. Orsini available at this
URL:http://dblab.dsi.unive.it:8080
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Note that the following properties hold.

– If X → Y in R or in S, then this is still the case in R× S.
– If X is a key for R and Y is a key for S then X ∪ Y is a key for R× S.

A way for determining if an interesting functional dependency X → Y may be
inferred from the set F is to use the previous algorithm to compute X+. Instead, in
the following examples we will use the following version of the algorithm to compute
X+, which does not use explicitly the functional dependencies.

� Algorithm 12.2 Computing the Closure of an Attribute Set X

1. Let X+ = X .
2. Add to X+ all attributes Ai such that the predicate Ai = c is a conjunct

of σ, where c is a constant.
3. Repeat until X+ is changed:

(a) Add to X+ all attributes Aj such that the predicate Aj = Ak is a
conjunct of σ and Ak ∈ X+.

(b) Add toX+ all attributes of a table ifX+ contains a key for that table.

The following theorem gives a sufficient condition for duplicate elimination.

� Theorem 12.2 Duplicate Elimination
LetA be the set of attributes of the result andK be the union of the attributes
of the key of every table used in the query. If A → K, e.g. if A+ contains a
key of every table used in the query, then δ is unnecessary.

Although the use of the closure A+ is not enough to discover all cases where du-
plicate elimination is unnecessary, it handles a large subclass of queries [Ceri and
Widom, 1991], [Paulley and Larson, 1994].

Example 12.2
Let us consider the database

Products(PkProduct, ProductName, UnitPrice)
Invoices(PkInvoiceNo, Customer, Date, TotalPrice)
InvoiceLines(FkInvoiceNo, LineNo, FkProduct, Qty, Price)

and the query

SELECT DISTINCT FkInvoiceNo,TotalPrice
FROM InvoiceLines, Invoices
WHERE FkInvoiceNo = PkInvoiceNo;

To check whether DISTINCT is unnecessary let us compute the closure of the
projection attributes.

A+ = {FkInvoiceNo,TotalPrice}
= {FkInvoiceNo,TotalPrice, PkInvoiceNo, Customer, Date}

DISTINCT is necessary becauseA+ does not contain the key of the table Invoice-
Lines.

Let us change now the previous query as follows and compute A+:
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SELECT DISTINCT FkInvoiceNo,TotalPrice
FROM InvoiceLines, Invoices
WHERE FkInvoiceNo = PkInvoiceNo AND LineNo = 1;

A+ = {FkInvoiceNo,TotalPrice}
= {FkInvoiceNo,TotalPrice, LineNo}
= {FkInvoiceNo,TotalPrice, LineNo, PkInvoiceNo, Customer, Date,

FkProduct, Qty, Price}

DISTINCT becomes unnecessary because A+ contains the primary keys of all
tables.

When a query contains GROUP BY , let G be the grouping attributes.
The DISTINCT is unnecessary ifA → G , e.g. ifA+ contains the group-
ing attributes.

Let us consider the following query and the closure of the projection attributes:

SELECT DISTINCT FkInvoiceNo, COUNT(*) AS N
FROM InvoiceLines, Invoices
WHERE FkInvoiceNo = PkInvoiceNo
GROUP BY FkInvoiceNo, Customer;

A+ = {FkInvoiceNo}
= {FkInvoiceNo, PkInvoiceNo}
= {FkInvoiceNo, PkInvoiceNo, Customer, Date, TotalPrice}

The DISTINCT is unnecessary because A+ contains the grouping attributes.

GROUP BY Elimination

A GROUP BY , as a DISTINCT , frequently requires a physical plan with an expensive
Sort operation. Therefore it is worthwhile to test if a GROUP BY can be eliminated,
either because each group consists only of a single record or because there is only a
single group.

The test can be done as shown with the following examples.

Example 12.3
Let us consider the database
Products(PkProduct, ProductName, UnitPrice)
Invoices(PkInvoiceNo, Customer, Date, TotalPrice)
InvoiceLines(FkInvoiceNo, LineNo, FkProduct, Qty, Price)

and the query
SELECT FkInvoiceNo, COUNT(*) AS N
FROM InvoiceLines, Invoices
WHERE FkInvoiceNo = PkInvoiceNo

AND TotalPrice > 10000 AND LineNo = 1
GROUP BY FkInvoiceNo, Customer;
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The GROUP BY is unnecessary if each group consists only of a single
record.

To check whether the GROUP BY is unnecessary, let us check whether the fol-
lowing query producing the data to be grouped is without duplicates.

SELECT FkInvoiceNo, Customer
FROM InvoiceLines, Invoices
WHERE FkInvoiceNo = PkInvoiceNo

AND TotalPrice > 10000 AND LineNo = 1;

A+ = {FkInvoiceNo, Customer}
= {FkInvoiceNo, Customer, LineNo}
= {FkInvoiceNo, Customer, LineNo, PkInvoiceNo, . . .}

A+ contains the primary keys of all tables, and therefore the query result is
without duplicates and the GROUP BY query can be rewritten as a projection
with the aggregation functions rewritten with the rules: COUNT as 1; MIN(A),
MAX(A), SUM(A), AVG(A) as A.

SELECT FkInvoiceNo, 1 AS N
FROM InvoiceLines, Invoices
WHERE FkInvoiceNo = PkInvoiceNo

AND TotalPrice > 10000 AND LineNo = 1;

The GROUP BY is unnecessary if there is only a single group.

To check whether the GROUP BY is unnecessary let us check whether the value
of the grouping attributes is identical for every tuple, e.g. whether the closure
of the empty set of attributes { }+ contains the grouping attributes.

Q1: SELECT PkProduct, COUNT(*) AS N
FROM InvoiceLines, Products
WHERE FkProduct = PkProduct AND FkProduct = 44
GROUP BY PkProduct;

{ }+ = {FkProduct}
= {FkProduct, PkProduct, ProductName, UnitPrice}

The GROUP BY is unnecessary since { }+ contains the grouping attributes, and
the query can be rewritten as follows:

SELECT 44 AS PkProduct, COUNT(*) AS N
FROM InvoiceLines, Products
WHERE FkProduct = PkProduct AND FkProduct = 44;

Note the following points:

– The rewriting is only possible if the values of the constant attributes in the
SELECT are known in the query. For instance, the query:
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Q2: SELECT PkProduct, ProductName, COUNT(*) AS N
FROM InvoiceLines, Products
WHERE FkProduct = PkProduct AND FkProduct = 44
GROUP BY PkProduct, ProductName;

cannot be rewritten although the grouping attributes are contained in { }+,
since ProductName is a constant, but its value is not known in the query and
so it cannot be rewritten in the SELECT . Therefore the GROUP BY cannot be
eliminated but, since there is only a single group, in the physical query plan
the operator does not require the Sort operator.

– Let us change the query Q1 by eliminating the aggregation in the SELECT :

SELECT PkProduct
FROM InvoiceLines, Products
WHERE FkProduct = PkProduct AND FkProduct = 44
GROUP BY PkProduct;

The GROUP BY is again unnecessary because produces only a single group,
and the query is rewritten by using DISTINCT as follows, for the equivalence
rule δ(πbA1,A2,...,An

(E)) ≡ A1,A2,...,Anγ(E):

SELECT DISTINCT PkProduct
FROM InvoiceLines, Products
WHERE FkProduct = PkProduct AND FkProduct = 44;

The same rewriting with DISTINCT is now possible also of the query Q2 with-
out the aggregation in the SELECT :

SELECT DISTINCT PkProduct, ProductName
FROM InvoiceLines, Products
WHERE FkProduct = PkProduct AND FkProduct = 44;

In both cases, since there is only a single group, in the physical query plan
the DISTINCT does not require the Sort operator.

WHERE-Subquery Elimination

Subqueries can occur in the WHERE clause through the operators =,<,>,<=,>=,
<>; through the quantifiers ANY, or ALL; or through the operators EXISTS and IN and
their negations NOT EXISTS and NOT IN. We assume that all of these case have been
converted into an equivalent form using only EXISTS and NOT EXISTS.

In general, to execute such queries, the optimizer generate a physical plan for the
subquery, which then will be executed for each record processed by the outer query.
Therefore, the presence of a subquery makes the physical plan more expensive, and
for this reason techniques have been studied to transform a query into an equivalent
one without the subquery, which the optimizer processes more efficiently.

Kim has proposed some basic subquery types and for each of them has given the
transformation rule to rewrite the query [Kim, 1982], [Ganski and Wong, 1987]. The
general case is a complex problem. Let us restrict the subquery elimination to the
case of EXISTS without NOT and correlated subquery without aggregations, discussed
then by examples:
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SELECT R1.A1,. . . ,R1.An
FROM R1
WHERE [Condition C1 on R1 AND]

EXISTS ( SELECT *
FROM R2
WHERE Condition C2 on R2 and R1 );

is equivalent to the join query

SELECT DISTINCT R1.A1,. . . ,R1.An
FROM R1, R2
WHERE Condition C2 on R1 and R2

[AND Condition C1 on R1];

DISTINCT is necessary in the join form when a (1:N) relationship exists between R1
and R2.

Example 12.4
Let us consider the database

Courses(CrsName, CrsYear,Teacher, Credits)
Transcripts(StudId, CrsName, Year, Date, Grade)

and the query with EXISTS to list all courses with at least a transcript, for the
year 2012.

SELECT ∗
FROM Courses C
WHERE CrsYear = 2012 AND

EXISTS
(
SELECT ∗
FROM Transcripts T
WHERE T.CrsName = C.CrsName AND T.Year = CrsYear
);

The unnested equivalent query is

SELECT DISTINCT C.∗
FROM Courses C, Transcripts T
WHERE T.CrsName = C.CrsName AND T.Year = CrsYear

AND CrsYear = 2012;

Let us consider now a query with EXISTS and a correlated subquery with an
aggregation, to list all courses with an average grade greater than 27, for the
year 2012.

SELECT CrsName, Teacher
FROM Courses C
WHERE CrsYear = 2012 AND

EXISTS
(
SELECT AVG(Grade)
FROM Transcripts T
WHERE T.CrsName = C.CrsName AND T.Year = CrsYear
HAVING 27 < AVG(Grade)
);
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The unnested equivalent query is

SELECT C.CrsName AS CrsName, Teacher
FROM Courses C, Transcripts T
WHERE T.CrsName = C.CrsName AND T.Year = CrsYear

AND CrsYear = 2012
GROUP BY C.CrsName, CrsYear, Teacher
HAVING 27 < AVG(Grade);

Let us assume that there are courses without transcripts, and we want to list all
of them for the year 2012. The following query with EXISTS is correct because
it does not eliminate a course without a transcript from the result:

SELECT CrsName, Teacher
FROM Courses C
WHERE CrsYear = 2012 AND

EXISTS
(
SELECT COUNT(Grade)
FROM Transcripts T
WHERE T.CrsName = C.CrsName AND T.Year = CrsYear
HAVING 0 = COUNT(Grade)
);

Let us unnest the query as in the previous case:

SELECT C.CrsName AS CrsName, Teacher
FROM Courses C, Transcripts T
WHERE T.CrsName = C.CrsName AND T.Year = CrsYear

AND CrsYear = 2012
GROUP BY C.CrsName, CrsYear, Teacher
HAVING 0 = COUNT(Grade);

Unfortunately the unnested query is not equivalent to the query with EXISTS
because the join does not include in the result a course without a transcript.

This wrong example of WHERE -subquery elimination is well-known as the
count bug problem, and only arises when the aggregation function is COUNT. A
correct solution in this case consists in replacing the unnested query join by an
outer join as follows:

SELECT C.CrsName AS CrsName, Teacher
FROM Courses C OUTER JOIN Transcripts T

ON (T.CrsName = C.CrsName AND T.Year = CrsYear)
AND CrsYear = 2012

GROUP BY C.CrsName, CrsYear, Teacher
HAVING 0 = COUNT(Grade);

The use of the outer join in the WHERE -subquery elimination is also neces-
sary for queries with NOT EXISTS . For example, to list all courses without a
transcript for the year 2012, the following query

SELECT ∗
FROM Courses C
WHERE CrsYear = 2012 AND

NOT EXISTS
(
SELECT ∗
FROM Transcripts T
WHERE T.CrsName = C.CrsName AND T.Year = CrsYear
);
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must be unnested as follows

SELECT C.∗
FROM Courses C OUTER JOIN Transcripts T

ON (T.CrsName = C.CrsName AND T.Year = CrsYear)
WHERE CrsYear = 2012 AND T.CrsName IS NULL;

View Merging

Complex queries are much easier to write and understand if views are used. A view
can be created with a CREATE VIEW VName clause, and the definition stays in the
database until a command DROP VIEW VName is executed. Instead, the use of the
WITH clause provides a way of defining temporary views available only to the query
in which the clause occurs.

In general, when a query uses a view, the optimizer generates a physical sub-plan
for the SELECT that defines the view, and optimizes the query considering the scan
as the only access method available for the result of the view. This technique usually
leads to a suboptimal physical query plan, because the view is optimized separately
from the rest of the query. Better physical plans can be generated when in the query
transformation phase the SELECT which defines the view can be absorbed into the
query definition, and so a view sub-plan is no longer necessary.

Example 12.5
Let us consider the database Personnel

Department(PkDept, DName, Location)
Employee(PkEmp, EName, Job, Salary, FkDept)

and the query

WITH Technician AS
(

SELECT PkEmp, EName, Salary
FROM Employee
WHERE Job = ’Technician’

)
SELECT EName, Salary
FROM Technician
WHERE Salary > 2000;

Using view merging, the query can be transformed into:

SELECT EName, Salary
FROM Employee
WHERE Salary > 2000 AND Job = ’Technician’;

The transformation is made by replacing, in the logical query plan, the reference to
a view name with its logical plan. Then the new logical plan is rewritten using the
equivalence rules of relational algebra to put it in the following canonical form of an
SQL query without the use of views, with grouping and selection above all the joins:
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πb(σ(γ(σ( ./J Ri))))

The transformation of a query to avoid the use of views is not always possible, espe-
cially if a view is defined with a GROUP BY.

Example 12.6
Let us consider the database Personnel and the view

CREATE VIEW NoEmployeeByDept AS
SELECT FkDept, COUNT(*) AS NoEmp
FROM Employee
GROUP BY FkDept;

To find the average number of employees of the departments we use the query

SELECT AVG(NoEmp)
FROM NoEmployeeByDept;

which cannot be transformed to avoid using the view.

The transformation of a query to avoid the use of views defined with a GROUP BY
generally requires pulling the GROUP BY up above a join present in the query using
the following algebraic equivalence rule:

� Definition 12.4 Pulling-up-grouping-over-join

Let XR be a set of attributes of R, with fk ∈ XR the foreign key of R, pk
the primary key of S, with attributes A(S), then

(XR
γ F (R)) ./

fk=pk
S ≡ XR∪A(S)γ F (R ./

fk=pk
S)

Example 12.7
Let us consider the database Personnel

Department(PkDept, DName, Location)
Employee(PkEmp, EName, Job, Salary, FkDept)

and the query

WITH EmpGby AS
(

SELECT FkDept, AVG(Salary) AS AvgSal
FROM Employee
GROUP BY FkDept

)
SELECT DName, AvgSal
FROM EmpGby, Department
WHERE FkDept = PkDept;
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The manual of a DBMS says: “Because there is no equivalent statement that ac-
cesses only base tables, the optimizer cannot transform this statement. Instead,
the optimizer chooses an execution plan that issues the view’s query and then
uses the resulting set of rows as it would the rows resulting from a table access.”

We show, instead, how the query can be rewritten without the use of the view.
Consider the logical query plan, where the view EmpGby has been replaced with
its logical plan:

πb
DName, AvgSal

./
FkDept = PkDept

FkDeptγ AVG(Salary) AS AvgSal

Employee

Department

For the pulling-up-grouping-over-join rule, the tree can be rewritten as:

πb
DName, AvgSal

FkDept, DName, Locationγ AVG(Salary) AS AvgSal

./
FkDept = PkDept

Employee Department

Location can be eliminated from the grouping attributes because FkDept DName
→ Location and it is not used in the projection attributes, and so the logical query
plan becomes

πb
DName, AvgSal

FkDept, DNameγ AVG(Salary) AS AvgSal

./
FkDept = PkDept

Employee Department

The rewritten logical query plan represents the query

SELECT DName, AVG(Salary) AS AvgSal
FROM Employee, Department
WHERE FkDept = PkDept
GROUP BY FkDept, DName;
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12.4 Physical Plan Generation Phase

The goal of this phase is to find a plan to execute a query, among the possible ones,
which has the minimum cost on the basis of the available information on storage
structures and statistics.

The main steps of the Physical plan generation phase are:

– Generation of alternative physical query plans.
– Choice of the physical query plan with the lowest estimated cost.

To estimate the cost of a physical query plan it is necessary to estimate, for each node
in the physical tree, the following parameters by means of the techniques seen in the
previous chapter:

– The cost of the physical operator.
– The size of the result and if the result is sorted.

Before seeing how to generate alternative plans, and how to choose the least expen-
sive one, let us see an example of alternative physical plans for a query and their
cost.

Example 12.8
Let us consider the database

R(PkR :integer, aR :string, bR :integer, cR :integer)
S(PkS :integer, FkR :integer, FkT :integer, aS :integer, bS :string, cS :integer)
T(PkT :integer, aT :int, bT :string)

and the query:

SELECT aR
FROM S, R
WHERE FkR = PkR AND cS = 2000 AND cR > 100;

Suppose that:

– The attribute values have a uniform distribution in the relations;
– Npag(S) = 1000, Nrec(S) = 100 000 and Nkey(cS) = 100;
– Npag(R) = 500, Nrec(R) = 40 000 and the simple condition on cR has a

selectivity factor of 1/3;
– Npag(T) = 100, Nrec(R) = 20 000;
– There is a clustered index on cS, and unclustered indexes on primary and

foreign keys, and on (cS, FkR, bS);
– In the cost estimation with the use of an index, the component CI will not be

considered.

Let us consider two alternative physical query plans, with S as external operand:

1. The query is executed with the following physical plan using the join opera-
tor PageNestedLoop.
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Project
({aR})

Filter
(cS= 2000ANDcR> 100)

PageNestedLoop
(FkR=PkR)

TableScan
(S)

TableScan
(R)

The query plan cost is

CPNL = Npag(S) +Npag(S)×Npag(R)

= 1000 + 1000× 500 = 501 000

2. The query is executed with the following physical query plan using the avail-
able indexes.

Project
({aR})

IndexNestedLoop
(FkR=PkR)

IndexFilter
(S, IcS, cS= 2000)

Filter
(cR> 100)

IndexFilter
(R, IPkR, PkR=FkR)

The query plan cost is

C INL = C(OE) + Erec(OE)× C(OI)

= 10 + 1000× 1 = 1010

The records of S that satisfy the condition are retrieved using the clustered
index on cS with the cost of d1/100× 1000e = 10 page accesses. For each
record retrieved (in total 1000), the relation R is accessed using the index on
the primary key PkR with the cost of 1010 page accesses, which is signifi-
cantly lower than the one of the previous case.

12.4.1 Working Hypothesis

We will study the query optimization problem under certain assumptions about the
query types, in addition to those already made in the previous chapter about the phys-
ical data organization, the cost model, the buffer management strategies, and the
statistics available.
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Query Types

The main problems to solve in optimizing queries will be shown using a SQL lan-
guage subset, and then we will see how to extend the results to deal with the general
case. In particular, the focus will initially be on queries such as:

SELECT AttributesList
FROM RelationsList
WHERE Condition;

where:

– AttributesList are the attributes of the query result (∗ stands for all the attributes).
– RelationsList are the relations used.
– Condition can be a conjunction of simple conditions on relations attributes Ai. We

assume that simple conditions are of the following types:

– Ai θ ci, with θ ∈ {>,≥, <,≤,=, 6=} and ci a constant in dom(Ai).
– Ai IN (c1; . . . ; cn).
– Ai BETWEEN c1 AND c2.
– Ai = Aj (equi-join condition).

where the same attributes Ai of different relations, R and S, are made different
writing them as R.Ai and S.Ai;

When a condition involves attributes of two relations R and S, we assume that it is in
the form: ψR AND ψS AND ψJoin, where ψR is a condition on the R attributes, ψS
is a condition on the S attributes, and ψ Join is a join condition.

Note, therefore, that initially the focus will be on queries in which the following
clauses are not used: DISTINCT, GROUPBY, subqueries, set operators, and views. Once
the optimization of this type of query has been considered, we will see how to release
the restrictions for considering the general case. The subset of the SQL language
taken initially into consideration simplifies the problem, but it is sufficient to focus
on the fundamental problems to be solved during query optimization.

Physical Query Plan

A physical query plan is the algorithm selected by the optimizer to execute a query.
For example, the query in Figure 12.3a is executed with the physical plan in Fig-
ure 12.3b.

In the following, some of the physical operators provided by the JRS will be used,
described in the previous chapter:2

Relation (R) TableScan(R), IndexScan(R, I), SortScan(R, {Ai}).
Selection (σψ) Filter(O,ψ), IndexFilter(R, I, ψ),

IndexOnlyFilter(R, I, ψ).
Projection (πb) Project(O, {Ai}).
Duplicate elimination (δ) Distinct(O).
Join (./

ψJ )
NestedLoop(OE , OI , ψJ ),
IndexNestedLoop(OE , OI , ψJ ), MergeJoin(OE , OI , ψJ ).

Sort (τ{Ai}) Sort(O, {Ai}).

2. The operands of a physical operator are relations R or other operators O. OE stands for the external
operand and OI for the internal operand.
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πb
PkEmp, EName

./
FkDept = PkDept

πb
PkEmp, EName, FkDept

σESalary= 2000

Employee

πb
PkDept

σDLocation= ′Pisa′

Department

(a) Logical query plan

Project
({PkEmp,EName})

NestedLoop
(FkDept=PkDept)

Project
({PkEmp,EName,FkDept})

Filter
(ESalary= 2000)

TableScan
(Employee)

Project
({PkDept})

Filter
(DLocation= ′Pisa′)

TableScan
(Department)

(b) Physical query plan

Figure 12.3: An example of logical and physical query plans

The following sections will show how to choose the physical query plan of minimum
cost considering first the case of queries on a single relation, with only a selection
condition, and then the case of queries on several relations, with selection and join
conditions. We will also make some considerations for the case of queries with OR-
DER BY.

12.4.2 Single-Relation Queries

If the query uses just one relation, the operations involved are the projection and
selection. For example:

SELECT bS
FROM S
WHERE FkR > 100 AND cS = 2000;

If there are no useful indexes, the solution is trivial: a relation scan is performed to
find the records that match the condition, and then the projection is applied. If there
are useful indexes, different solutions are possible.

Use of Single-Index. If there are different indexes usable for one of the simple
conditions, the one of minimal cost is used, and then the operation is completed by
testing whether the retrieved records satisfy the remaining conditions and the projec-
tion is applied.
The records of the result are sorted on the index attribute. If sorting the result on a
different attribute is required, then in the choice of the index the cost of a sort should
be taken into account too.

For the query under consideration, the best physical plan is with the index on cS.
Then the records that match the condition on FkR are projected over bS.

Use of Multiple-Indexes. We proceed as in the previous chapter in the case of
the selection operator. The operation is completed by testing whether the retrieved
records satisfy the remaining conditions and the projection is applied.

For the query under consideration, both the indexes on cS and FkR are used to find
the RIDs of the records that match both conditions. Then the lists are intersected and
the records are retrieved from the relation and projected over bS.
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Index-Only Plans. All the main DBMS always try to create index-only
query plans, because they have better performance. Therefore, as we have
seen, they support indexes that contain both search attributes and some ex-
tra attributes, chosen among those that are often accessed together with the
search attributes. Such indexes are useful to support index-only query plans.

Use of Index-Only. If all the attributes of the condition of the SELECT are in-
cluded in the prefix of the key of an index on the relation, the query can be evaluated
using only the index with the query plan of minimum cost.

For the query under consideration, the index on (cS, FkR, bS) is used both to find
the records matching the condition, and the value of the attribute bS in the SELECT ,
without accesses to the relation. Estimating the costs of the physical query plan in the
three cases considered is left as an exercise.

12.4.3 Multiple-Relation Queries

Queries with two or more relations in the FROM clause require joins (or cross-
products). Finding a good physical query plan for these queries is very important
to improve their performances.

Several algorithms have been proposed for a cost-based query optimization with
approaches based on heuristic search or dynamic programming techniques [Stein-
brunn et al., 1997; Lanzelotte and Valduriez, 1991; Kossmann and Stocker, 2000]. In
the following, for simplicity, we will consider only a version of the first approach,
based on the idea of generating and searching a state space of possible solutions to
find the one with minimal cost.

The state space is constructed step-by-step starting with an initial state and re-
peatedly applying a set of operators to expand a state s into other ones, called the
successors of s.

Each state s corresponds to a relational algebra subexpression of a given query Q
to optimize, and the successors of s are larger subexpressions of Q. The cost of a
state s is that of the best physical plan to execute the expression associated to s.

The state space is represented as a tree of nodes, where the root is the empty subex-
pression, the first level nodes are the query relations or selections and projections on
each of them; the following levels are alternative joins of the algebraic expressions
of the previous level. The node of the “optimum” state is the expression the contains
all the query joins, which is then extended with other operators (e.g. project, sort
or group by) to become the final state of the query expression, with the associated
minimal cost physical query plan.

Figure 12.4 gives a description of a full search algorithm to find a solution in the
states space.

As queries become more complex, the full search algorithm cannot find the overall
best physical query plan in a reasonable amount of time because of the exponential
nature of the problem. Therefore, several heuristics have been proposed in the DBMS
literature that allow the query optimizer to avoid bad query plans and find query
plans that, while not necessarily optimal, are usually “good enough”. Let us see some
examples of the most commonly used heuristics, in particular those for reducing both
the number of states generated and the number of states to consider for expansions.

– Limitation of the number of successors. As we saw in the previous chapter, the
cost of a join depends on the order in which the operands are considered. In the
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Input: A query Q = τ(π(σ(R1 ./ R2 ./ . . . ./ Rn)))
Output: The best query plan for Q

1: Step 1. Let generated states be the set that contains one query subexpressions for each Ri,
with local conditions applied, and the associated best physical plan.

2: Step 2. Expand next state.
3: for i = 2 to n do {
4: Let S be the state in generated states with minimum cost;
5: If S contains all the query joins, exit from for;
6: Eliminate S from generated states;
7: Expand S with all possible joins of i relations, and the associated best physical plan,

and add them to generated states
8: }
9: Step 3. Let best plan be the query plan associated to S completed with other operators in Q.
10: return best plan.

Figure 12.4: A full search algorithm.

case of a join between more than two relations the number of alternatives increases
considerably. For example, to perform the join of three relationsR(A,B), S(B,C)
and T (C,D), it is necessary to consider all the permutations and for each of them,
for example R,S, T , the possible evaluation orders of the joins: (R ./ S) ./ T
e R ./ (S ./ T ). In general, with n relations there are (2(n − 1))!/(n − 1)!
ways to perform the joins. For n = 5, the number of ways is 1680, which becomes
17 297 280 for n = 8.

To reduce the number of cases to consider, the following heuristic is usually adopted,
which has been proposed and experimented with the System R optimizer: each per-
mutation is evaluated by associating to the left the join operators, thus producing
left-deep trees, where the right operand of a join node is not another join, as it
happens in right-deep or bushy trees (Figure 12.5a, instead of (Figure 12.5b). A
left-deep tree has the advantage of allowing the use of an index nested loop join
operator.

For example, to execute the join R ./ S ./ T , 4 cases only are considered instead
of 12: (R ./ S) ./ T , (S ./ R) ./ T , (S ./ T ) ./ R, (T ./ S) ./ R.

– Greedy search. Once the logical node of minimum cost has been selected to be ex-
panded, the other nodes will not be considered any longer by the search algorithm,
and will be eliminated from generated states.

In general, the final physical query plan found with a greedy search is a suboptimal
solution but, thanks to the fact that it is found in less time, this search is usually
used by default by DBMSs.

– Iterative full search. In the case of complex queries, for example with more than
15 joins, another possibility for searching a good physical query plan is to use a
mixed approach: the full search is made up to a predetermined number of levels,
for example 4, then the best node to expand is chosen, and the other nodes will not
be considered any longer, as with a greedy search. Then the full search is made
again for the predetermined number of levels, and so on [Steinbrunn et al., 1997;
Kossmann and Stocker, 2000].

– Interesting orders. When the merge-join operator is available, or the query re-
sult must be sorted as required by the presence of SQL ORDER BY or GROUP BY
clauses, it is useful to organize the search as was proposed for the System R: At
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./

./

./

R1 R2

R3

R4

(a) Left-deep

./

./

R3 ./

R1 R2

R4

(b) Bushy

Figure 12.5: Examples of equivalent join trees

each step, for each logical query subexpression, in addition to the query plan with
minimum cost, also the best plans producing an interesting order of the records
potentially useful for the final physical query plan are preserved.

Example 12.9
Consider the relations:

P(aP :integer, FkQ :integer, bP :string, cP :string, dP :string)
Q(PkQ :integer, aQ :string, bQ :integer, cQ :string)

and the query:

SELECT aQ, bP
FROM Q, P
WHERE PkQ = FkQ AND bQ = 13 AND cP = ’AA’;

Let us assume that

– there are four unclustered indexes on bQ, PkQ, cP and FkQ;
– the statistics shown in Table 12.1 are available;
– a join is executed with the methods nested loop or index nested loop, to sim-

plify in this example the number of cases to be considered in the search for
the best physical query plan.

Q P

Nrec = 200 Nrec = 2 000

Npag = 100 Npag = 400

Nkey(IbQ) = 20 Nkey(IcP) = 100

Nleaf(IbQ) = 3 Nleaf(IcP) = 20

Nkey(IPkQ) = 200 Nkey(IFkQ) = 200

Nleaf(IPkQ) = 5 Nleaf(IFkQ) = 25

Table 12.1: Statistics on relations Q and P

The query is optimized with a greedy search algorithm organized into the fol-
lowing steps.
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Step 1
For each relation R used by the query, the relational algebra subexpression ER
with the selection pushed-down to the relation is considered. Alternative phys-
ical plans for each expression are generated, and the cheapest plan is chosen
(Figure 12.6).

σbQ= 13(Q)︸ ︷︷ ︸ σcP= ′AA′(P)︸ ︷︷ ︸
Filter

(bQ= 13)

TableScan
(Q)

1

IndexFilter
(Q, IbQ, bQ= 13)

2

Filter
(cP= ′AA′)

TableScan
(P)

3

IndexFilter
(P, IcP, cP= ′AA′)

4

Figure 12.6: Search tree with alternative physical plans for subexpression on
relations

The costs of the physical plans for EQ = σbQ=13(Q) are:

C1(EQ) = Npag(Q) = 100

C2(EQ) = dfs(bQ = 13)×Nleaf(IbQ)e+

Φ(dNrec(Q)/Nkey(IbQ)e, Npag(Q))

= d3/20e+ Φ(10, 100) = 1 + 10 = 11

In both cases the result size is

Erec = dNrec(Q)/Nkey(IbQ)e = 200/20 = 10

The best physical plan for EQ is 2, with the index on bQ.

The costs of the physical plans for EP = σcP = ′AA′(P ) are:

C3(EP ) = Npag(P) = 400

C4(EP ) = dfs(cP = ’AA’)×Nleaf(IcP)e+

Φ(dNrec(P)/Nkey(IcP)e, Npag(P))

= d20/100e+ Φ(20, 400) = 1 + 20 = 21

In both cases the result size is

Erec = dNrec(P)/Nkey(IcP)e = 2 000/100 = 20

The best physical plan is 4 for EP , with the index on cP, and cost 21 (Ta-
ble 12.2).
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1 2 3 4

Plan Fig. 12.6 Fig. 12.6 Fig. 12.6 Fig. 12.6
Erec 10 10 20 20
Cost 100 11 400 21
Order – bQ – cP

Table 12.2: Parameters for the relation physical plans

Step 2
The expression EQ = σbQ=13(Q) with the minimum cost physical plan (Ta-
ble 12.2) is expanded by considering the possible joins

EQ1 = (σbQ=13(Q)) ./
PkQ = FkQ (σcP = ′AA′(P ))

EQ2 = (σcP = ′AA′(P )) ./
FkQ = PkQ (σbQ=13(Q))

Alternative physical plans for each expression are generated, and the cheapest
plan is chosen (Figure 12.7).

σbQ=13(Q)

σbQ= 13(Q) ./
PkQ=FkQ σcP= ′AA′(P)︸ ︷︷ ︸ σcP= ′AA′(P) ./

FkQ=PkQ σbQ= 13(Q)︸ ︷︷ ︸

NestedLoop
(PkQ=FkQ)

IndexFilter
(Q, IbQ, bQ=13)

IndexFilter
(P, IcP, cP=′AA′)

2.1

IndexNestedLoop
(PkQ=FkQ)

IndexFilter
(Q, IbQ, bQ=13)

Filter
(cP=′AA′)

IndexFilter
(P, IFkQ, FkQ=PkQ)

2.2

NestedLoop
(FkQ=PkQ)

IndexFilter
(P, IcP, cP=′AA′)

IndexFilter
(Q, IbQ, bQ=13)

2.3

IndexNestedLoop
(FkQ=PkQ)

IndexFilter
(P, IcP, cP=′AA′)

Filter
(bQ=13)

IndexFilter
(Q, IPkQ, PkQ=FkQ)

2.4

Figure 12.7: Search tree with physical plans for subexpressions with joins

The cost of EQ1 with the nested loop (plan 2.1) is:

C2.1
NL(EQ1) = C(OE) + Erec(OE)× C(OI) = 11 + 10× 21 = 221

The cost of EQ1 with the index nested loop (plan 2.2), and the index on FkQ of
P, is:

C2.2
INL(EQ1) = C(OE) + Erec(OE)× C(OI)

The physical plans cost C(OI) with the index on FkQ is:

C(OI) = dfs(FkQ = )×Nleaf(IFkQ)e+

Φ(dNrec(P)/ Nkey(IFkQ)e, Npag(P))

= d25/200e+ Φ(10, 400) = 1 + 10 = 11
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and so

C2.2
INL(EQ1) = 11 + 10× 11 = 121

With both the join methods the result size is:

Erec = dfs(CD = 13)×fs(cP = ’AA’)×fs(PkQ = FkQ)×Nrec(Q)×Nrec(P)e = 1

Proceeding in a similar way for the join expression EQ2 , we have the following
costs for the physical plans with the nested loop and index nested loop, using
the index on the primary key PkQ of Q:

C2.3
NL(EQ2) = C(OE) + Erec(OE)× C(OI) = 21 + 20× 11 = 241

C2.4
INL(EQ2) = C(OE) + Erec(OE)× C(OI) = 21 + 20× 2 = 61

With both the join methods the result size is Erec = 1, as in the previous case.

In conclusion, the best join physical plan is 2.4 for EQ2 , with the method index
nested loop, and cost 61 (Table 12.3).

2.1 2.2 2.3 2.4

Plan Fig. 12.7 Fig. 12.7 Fig. 12.7 Fig. 12.7
Erec 1 1 1 1
Cost 221 121 241 61
Order bQ bQ cP cP

Table 12.3: Parameters for the join physical plans

Step 3
Since the possible joins have already been considered in the previous step, new
subexpressions to consider are not generated. The greedy search algorithm ter-
minates with the final physical query plan shown in Figure 12.8.

Project
({aQ,bP})

IndexNestedLoop
(PkQ=FkQ)

IndexFilter
(P, IcP, cP= ′AA′)

Filter
(bQ= 13)

IndexFilter
(Q, IPkQ, PkQ=FkQ)

Figure 12.8: Final physical plan for the query of Example 12.9

12.4.4 Other Types of Queries

Let us show how to optimize a query when other clauses are used which have not yet
been taken into consideration.
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Optimization in DBMSs. It is easy to imagine that commercial systems
devote much attention to the query optimization, which are, with the transac-
tion manager, among the more complex DBMS modules to implement. Some
systems are not limited to producing only left-deep plans. Oracle and Sybase
ASE allow users to force the choice of join orders and indexes, while DB2
allows only the choice of the optimization level, for example using the algo-
rithm greedy. JRS generates by default left-deep plans, but it is possible to
select bushy trees and the level of optimization to use.

1. DISTINCT to specify duplicate elimination.
2. GROUP BY to group the result of a SELECT and to compute aggregation func-

tions.
3. Queries with set operations.

12.4.5 Queries with SELECT DISTINCT

If the DISTINCT clause is necessary, assuming that the operation is performed by
sorting, the physical plan for a SELECT ORDER BY is generated, and then extended
with the physical operator Distinct(O).

Example 12.10
Let us consider the query

SELECT DISTINCT aR
FROM R
WHERE cR > 100;

The physical plan is found as follows:

1. First the physical plan for the following query is found:

SELECT aR
FROM R
WHERE cR > 100
ORDER BY aR;

2. Then the physical plan is extended with the operator Distinct (Figure 12.9).

Distinct

Sort
({aR})

Project
({aR})

Filter
(cR> 100)

TableScan
(R)

Figure 12.9: A physical plan for the SELECT DISTINCT
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12.4.6 Queries with GROUP BY

If the GROUP BY is necessary, the optimizer produces a physical plan with the phys-
ical operator GroupBy or HashGroupBy as follows:
1. The best physical plan P is found to execute the subquery to produce the data to

be grouped.
2. The best extensions of P is found to execute the grouping of its result:

(a) with GroupBy and P is extended with Sort of the grouping attributes,
(b) with HashGroupBy only.

3. Finally, if the SELECT has also a HAVING clause, the physical plan is extended
with a selection operator, and the selected operator GroupBy or HashGroupBy com-
putes all the aggregate functions used in the HAVING and SELECT clauses.

The result of HashGroupBy is not sorted, but usually a plan with HashGroupBy costs
less than that with GroupBy, even in queries with ORDER BY, but when the consol-
idation ratio is high, i.e. the ratio of the number of rows of the operand and that
of the grouping. For example, if the grouping concerns a very large table and the
primary key or attributes with a few different values are used in the grouping, the
consolidation ratio is low and the GroupBy is used.

Example 12.11
Let us consider the query:

SELECT aR, MAX(cR)
FROM R
WHERE cR > 100
GROUP BY aR
HAVING COUNT(*) > 3;

The physical plan is generated as follows:
1. Let P be the physical plan generated by the optimizer to produce the data to

be grouped (Figure 12.10a):
2. The physical plan P is extended with the operators Sort and GroupBy (Fig-

ure 12.10b) or with HashGroupBy only (Figure 12.10c) .
3. A Filter is added to take account of the clause HAVING .
4. A Project is added to produce the final result.

Filter
(cR> 100)

TableScan
(R)

(a) Plan P

Project
({aR,MAX(cR)})

Filter
(COUNT(∗)> 3)

GroupBy
({aR},{MAX(cR),COUNT(∗)})

Sort
({aR})

Filter
(cR> 100)

TableScan
(R)

(b) Final physical plan with GroupBy

Project
({aR,MAX(cR)})

Filter
(COUNT(∗)> 3)

HashGroupBy
({aR}, {MAX(cR), COUNT(*)})

Filter
(cR> 100)

TableScan
(R)

(c) Final physical plan with HashGroupBy

Figure 12.10: GROUP BY physical plans
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Example 12.12
Let us see some examples of physical plans generated by the JRS cost-based
query optimizer using different optimization strategies. Examples are given us-
ing the database schema in Figure 12.11 and the following query:

Countries

PkCountry �PK�
Nation �K�
Continent

InvoiceLines
FkInvoiceNo �PK�
�FK(Invoices)�

LineNo �PK�
FkProduct
�FK(Products)�

Qty
Price

Products
PkProduct �PK�
ProductID �K�
ProductName
Category
UnitPrice

Invoices
PkInvoiceNo �PK�
FkCustomer
�FK(Customers)�

Date

Customers
PkCustomer �PK�
FkCountry
�FK(Countries)�

CustomerName
CustomerType

Figure 12.11: The database schema

SELECT Nation, Category, SUM(Qty*Price) AS Revenue
FROM Countries CNT, Customers C, Products P, Invoices I, InvoiceLines IL
WHERE CNT.PkCountry = C.FkCountry

AND IL.FkProduct = P.PkProduct
AND IL.FkInvoiceNo = I.PkInvoiceNo
AND C.PkCustomer = I.FkCustomer

GROUP BY Nation, Category
HAVING COUNT(*) > 1;

The following information about the relations are available:

Countries Customers Products Invoices InvoiceLines

Nrec 51 338 200 868 2141
Npag 3 25 13 36 88

Table 12.4 compares the physical plans cost generated using the optimization
strategies available and the physical operator GroupBy or HashGroupBy.

Optimization Type of Query Query Plan Cost Query Plan Cost Result
Strategy Plan Tree GroupBy HashGroupBy Size

Greedy Search Left-Deep 11 144 9 134 24
Greedy Search Bushy 8 497 6 487 24
Full Search Left-Deep 11 144 9 134 24
Full Search Bushy 5 535 3 525 24
Iterative Full Search Left-Deep 11 144 9 134 24
Iterative Full Search Bushy 5 535 3 525 24

Table 12.4: A comparison of query plans

By default, the optimization strategy uses the heuristics greedy search and left-
deep query plans, which produce, in this example, the same plan of the full
search and iterative full search strategies, while in general they produce differ-
ent left-deep query plans with lower costs (Figure 12.12).
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Project
({Nation,Category,SUM(Qty∗Price ASRevenue)})

Filter
(COUNT(∗)>1)

HashGroupBy
({Nation,Category},{SUM(Qty∗Price),COUNT(∗)})

IndexNestedLoop
(IL.FkProduct=P.PkProduct)

IndexNestedLoop
(I.PkInvoiceNo=IL.FkInvoiceNo)

IndexNestedLoop
(C.PkCustomer=I.FkCustomer)

MergeJoin
(CNT.PkCountry=C.FkCountry)

SortScan
(Countries CNT, {CNT.PkCountry})

SortScan
(Customers C, {C.FkCountry})

IndexFilter
(Invoices I, IdxFKC, FkCustomer=C.PkCustomer)

IndexFilter
(InvoiceLines IL, IdxFKIL, FkInvoiceNo=I.PkInvoiceNo)

IndexFilter
(Products P, IdxPKP, PkProduct=IL.FkProduct)

Figure 12.12: A left-deep query plan with the greedy search strategy

Better plans are produced by choosing the option bushy query plan, which is the
most general type of plan (Figure 12.13).

Project
({Nation,Category,SUM(Qty∗Price)ASRevenue)})

Filter
(COUNT(∗)>1)

HashGroupBy
({Nation,Category},{SUM(Qty∗Price),COUNT(∗)})

MergeJoin
(P.PkProduct=IL.FkProduct)

SortScan
(Products P, {P.PkProduct})

Sort
({IL.FkProduct})

IndexNestedLoop
(I.PkInvoiceNo=IL.FkInvoiceNo)

IndexNestedLoop
(C.PkCustomer=I.FkCustomer)

MergeJoin
(CNT.PkCountry=C.FkCountry)

SortScan
(Countries CNT, {CNT.PkCountry})

SortScan
(Customers C, {C.FkCountry})

IndexFilter
(Invoices I, IdxFKC, FkCustomer=C.PkCustomer)

IndexFilter
(InvoiceLines IL, IdxFKIL, FkInvoiceNo=I.PkInvoiceNo)

Figure 12.13: A bushy query plan with the greedy search strategy
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The best plan is produced by the full search strategy (Figure 12.14).

Project
({Nation,Category,SUM(Qty∗Price)ASRevenue)})

Filter
(COUNT(∗)>1)

HashGroupBy
({Nation,Category},{SUM(Qty∗Price),COUNT(∗)})

MergeJoin
(CNT.PkCountry=C.FkCountry)

SortScan
(Countries CNT, {CNT.PkCountry})

Sort
({C.FkCountry})

MergeJoin
(C.PkCustomer=I.FkCustomer)

SortScan
(Customers C, {C.PkCustomer})

Sort
({I.FkCustomer})

MergeJoin
(P.PkProduct=IL.FkProduct)

SortScan
(Products P, {P.PkProduct})

Sort
({IL.FkProduct})

MergeJoin
(I.PkInvoiceNo=IL.FkInvoiceNo)

SortScan
(Invoices I, {I.PkInvoiceNo})

SortScan
(InvoiceLines IL, {IL.FkInvoiceNo})

Figure 12.14: A bushy query plan with the full search strategy

Pre-Grouping Transformation

The standard way to evaluate join queries with grouping and aggregations is to per-
form the joins first. However, several authors have shown that the optimizer should
also consider doing the grouping and aggregations before the join to produce cheaper
physical query plans.

For simplicity, let us show a solution of the problem by making the following
assumptions:

– The relations do not have attributes with null values.
– The joins are equi-joins using the primary and foreign keys with only one attribute,

and all are necessary to produce the query result, therefore they can not be elimi-
nated with a query rewriting.

– The aggregate functions are in the form AGG(attribute) AS Ide, with AGG = SUM, MIN,
MAX, COUNT, AVG. The aggregation attributes are different from those for grouping.

– The grouping attributes and aggregate functions may be renamed with the operator
AS.

– The problem of the pre-grouping transformation is presented by considering the
logical query plan and assuming that the optimizer chooses the best physical plan
for two logical plans with or without the pre-grouping.
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Let us consider first some basic equivalence rules on relational algebra expressions in-
volving the grouping operator γ, which will also be useful for proving more complex
ones later on. For brevity, we only give an informal justification of these equivalence
rules.

1. A restriction can be moved before the grouping operator in the following cases.

(a) If θ uses only attributes from X and F is a set of aggregate functions that use
only attributes from E, then

σθ(Xγ F (E)) ≡ Xγ F (σθ(E)) (12.1)

The restriction of the left hand side eliminates a record r from the γ result if
and only if it eliminates all the records from the group that has generated r.

(b) If X and B are attributes from E, with B 6∈ X , v is a B value and MIN is the
only aggregate function, then

σmB<v(Xγ MIN(B)AS mB(E)) ≡ Xγ MIN(B)AS mB(σB<v(E)) (12.2)

If the restriction of the left hand side eliminates a record r such that the at-
tribute value r.mB is the minimum among those of its group, then each record
ri of the group has ri.B ≥ r.mB ≥ v, and therefore all of them will be elim-
inated by the restriction of the right hand side. The equivalence also holds if
< is ≤.

(c) If X and B are attributes from E, with B 6∈ X , v is a B value and MAX is the
only aggregate function, then

σMB>v(Xγ MAX(B)AS MB(E)) ≡ Xγ MAX(B)AS MB(σB>v(E)) (12.3)

If the restriction of the left hand side eliminates a record r such that the at-
tribute value r.MB is the maximum of those of its group, then each record ri of
the group has ri.B ≤ r.MB ≤ v, and therefore all of them will be eliminated
by the restriction of the right hand side. The equivalence also holds if > is ≥.

2. If X and Y are attributes from E, Y 6⊆ X , X → Y and F is a set of aggregate
functions that use only attributes from E, then

Xγ F (E) ≡ πbX∪F (X∪Y γ F (E)) (12.4)

Each record of a group that has generated a record r of the γ in the left hand side
belongs to the same group that has generated a record r of the γ in the right hand
side.

3. An aggregate function f is called decomposable if there is a local aggregate func-
tion fl and a global aggregate function fg, such that for each multiset V and for
any partition of it {V1, V2} we have

f(V1 ∪all V2) = fg({fl(V1), fl(V2)})
where ∪all is the SQL’s union-all operator without duplicate elimination.
For example, SUM, MIN, MAX and COUNT are decomposable:

– SUM(V1 ∪all V2) = SUM({SUM(V1), SUM(V2)})
– MIN(V1 ∪all V2) = MIN({MIN(V1), MIN(V2)})
– MAX(V1 ∪all V2) = MAX({MAX(V1), MAX(V2)})
– COUNT(V1 ∪all V2) = SUM({COUNT(V1), COUNT(V2)})3
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If the aggregate functions in F are decomposable, X and Y are attributes from E,
Y 6⊆ X , X 6→ Y , then

Xγ F (E) ≡ Xγ Fg
(X∪Y γ FI

(E)) (12.5)

Adding new grouping attributes to the internal γ of the right hand side produces
smaller groups on which the local aggregate functions are computed, but then ex-
ternal γ combines these partial results to compute the global aggregate functions,
and the result is the same as the γ of the left hand side.

Invariant Grouping. For simplicity we consider algebraic expressions of the type
Xγ F (R ./

Cj
S). Any local selections on relations of the join are always pushed-down

and do not affect the pre-grouping transformations, for this reason they will be ig-
nored in the following considerations.

Let A(α) be the set of attributes in α and R ./
fk=pk

S an equi-join using the foreign
key fk of R and the primary key pk of S.

� Theorem 12.3

R has the invariant grouping property

Xγ F (R ./
fk=pk

S) ≡ πbX∪F ((X∪A(Cj)−A(S)γ F (R)) ./
fk=pk

S) (12.6)

if the following conditions hold:

1. X → fk, i.e. the foreign key of R is functionally determined by the
grouping attributes X in R ./

fk=pk
S.

2. Each aggregate function in F only uses attributes from R.

Example 12.13
Let us consider the database, where keys are underlined:

Products(PkProduct, PName, PCost, PCategory)
Orders(PkOrder, FkProduct, FkDealer, Price, Qty, Date)
Dealers(PkDealer, DName, DState, DAddress)

and the query

SELECT DName, SUM(Qty) AS Q
FROM Orders, Dealers
WHERE FkDealer = PkDealer
GROUP BY PkDealer, DName;

The logical plan without the pre-grouping is

3. AVG is not decomposable according the given definition, but it can be computed with a different
rule from two local functions SUM and COUNT:
AVG(V1 ∪all V2) = SUM({SUM(V1), SUM(V2)}) / SUM({COUNT(V1), COUNT(V2)})
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πb
DName, Q

PkDealer, DNameγ SUM(Qty) AS Q

./
FkDealer = PkDealer

Orders Dealers

To decide whether Orders has the invariant grouping property, since the Condi-
tion 2 holds, let us check whether (PkDealer, DName)→ FkDealer:

(PkDealer, DName)+ = {PkDealer, DName, FkDealer, . . .}

Since (PkDealer, DName)+ contains FkDealer, (PkDealer, DName) → FkDealer
holds and the γ can be pushed below the join on Orders. Therefore, we also
get the following logic plan that the optimizer will consider in choosing the best
physical query plan.

πb
DName, Q

./
FkDealer = PkDealer

FkDealerγ SUM(Qty) AS Q

Orders

Dealers

Example 12.14
Let us consider the database schema in Figure 12.11 and the following query:

SELECT FkProduct, SUM(Qty) AS TotalQty
FROM InvoiceLines, Products
WHERE FkProduct = PkProduct
GROUP BY FkProduct
HAVING COUNT(*) = 1;

The JRS cost-based query optimizer does not consider the possibility of doing
the group-by before the join, therefore, as usually happens in relational DBMSs,
the standard way to evaluate a query with HashGroupBy is to first retrieve the
records required by the operator, and then to execute it in order to produce the
final result. The optimizer generates the physical plan in Figure 12.15 with the
physical operator NestedLoop for join. A double click on the root node of the
plan displays information about the operator involved, the estimated number of
rows produced by the operator, and the estimated cost of the operation, which
in this case is 27 921.



c© 2015 by Albano et al. 12.4 Physical Plan Generation Phase 189

Project
({FkProduct,SUM(Qty)ASTotalQty})

Filter
(COUNT(∗)= 1)

HashGroupBy
({FkProduct},{SUM(Qty),COUNT(∗)})

NestedLoop
(FkProduct=PkProduct)

TableScan
(InvoiceLines)

TableScan
(Products)

Figure 12.15: Physical query plan generated by the optimizer

Let us now design manually with JRS a physical plan that exploits the rule for
pushing the group-by below the join (Figure 12.16). A double click on the root
node of the plan displays information about the estimated cost of the operation,
which in this case is 2 688, much lower than that of the plan generated by the
optimizer.

Project
({FkProduct,TotalQty})

Filter
(Num= 1)

NestedLoop
(InvoiceLines.FkProduct=Products.PkProduct)

HashGroupBy
({FkProduct},{SUM(Qty)ASTotalQty,COUNT(∗)ASNum})

TableScan
(InvoiceLines)

TableScan
(Products)

Figure 12.16: Physical query plan designed manually

12.4.7 Queries with Set Operations

Let us consider, for simplicity, only the case of the UNION operator, and the other set
operators are treated in a similar way.

Suppose that the following physical operator exists to perform the set union oper-
ation:

Union(OE , OI ) assuming that the operand records are sorted and without duplicates.

The optimizer is used to generate the physical plans for the two SELECT of the
UNION , with duplicate elimination operators, which then become the operands of the
Union operator.

When a set operator is used with the option ALL, the physical plans of the operand
are without the duplicate elimination operators.
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Example 12.15
Consider the query

SELECT aR
FROM R
WHERE cR < 50

UNION
SELECT aR
FROM R
WHERE cR > 100;

The physical plan is generated with the following steps:

1. The plans of the two SELECT , extended with the clause ORDER BY , are gen-
erated.

SELECT aR
FROM R
WHERE cR < 50
ORDER BY aR;

SELECT aR
FROM R
WHERE cR > 100
ORDER BY aR;

2. If necessary, the physical plan of the two SELECT is extended with the phys-
ical operator Distinct to eliminate duplicates.

3. The physical operator Union is added to produce the final result (Fig-
ure 12.17).

Union

Distinct

Sort
({aR})

Project
({aR})

Filter
(cR< 50)

TableScan
(R)

Distinct

Sort
({aR})

Project
({aR})

Filter
(cR> 100)

TableScan
(R)

Figure 12.17: Physical plan for UNION
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12.5 Summary

1. To execute an SQL query, it is first represented internally as a logical query plan,
then is rewritten to normalize the condition, to perform selections and projections
operations as early as possible, to eliminate subquery and views. Finally, the opti-
mizer chooses the best physical query plan.

2. Physical operators implement algorithms to execute relational algebra operators.
In general each logical operator can be implemented with several physical opera-
tors (e.g. a join can be implemeted with the physical operators nested loops, page
nested loops, index nested loops, merge-join, hash join) and the optimizer chooses
the most convenient.

3. The optimizer goal is to avoid expensive physical query plans and to look for a
good plan, even if it is not the best, using appropriate heuristics. Examples of
heuristics are: selection pushing to reduce the size of partial results, the use of
joins of left-deep trees only.

4. The optimizer operates on algebraic expressions of the type π(σ(./)) with the
option of providing the result sorted on some attributes of the projection. To deal
with other SQL clauses, the relational algebra provides other operators and the
initial physical plan is extended with the corresponding physical operators to have
the final physical query plan.
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Exercises

Exercise 12.1 Briefly answer the following questions:

1. Define the term selectivity factor.
2. Explain the role of interesting orders in a System R like optimizer.
3. Describe left-deep plans and explain why optimizers typically consider only such

plans.

Exercise 12.2 Consider the following schema, where keys are underlined:

Students(Id, Name, BirthYear, Status, Other)
Transcripts(Subject, StudId, Grade, Year, Semester)

Consider the following query:
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SELECT Subject, Grade
FROM Students, Transcripts
WHERE BirthYear = 1990 AND Id = StudId

Suppose that a clustered B+–tree index on StudId is available.
Show two physical plans, and the estimated costs, one with the use of the join

physical operator IndexNestedLoop and the other with the join physical operators
MergeJoin.

Exercise 12.3 Consider the following schema, where the keys are underlined:

Students(Id, Name, BirthYear, Status, Other)
Transcripts(Subject, StudId, Grade, Year, Semester)

Consider the following query:

SELECT Subject, COUNT(*) AS NExams
FROM Students, Transcripts
WHERE Year = 2012 AND Id = StudId
GROUP BY Subject
HAVING AVG(Grade) > 25;

1. Suppose that no indexes are available. Show the physical plan with the lowest
estimated cost.

2. If there is a B+–tree index on Subject, and a B+–tree index on Id, what is the
physical plan with lowest estimated cost?

Exercise 12.4 Consider the following schema, where the keys are underlined (dif-
ferent keys are underlined differently):

Customer(PkCustPhoneNo, CustName, CustCity)
CallingPlans(PkPlanId, PlanName)
Calls(PkCustPhoneNo, FkPlanId, Day, Month, Year, Duration, Charge)

where PkPlanId e PlanName are two different keys, and the following query

Q: SELECT Year, PlanName, SUM(Charge) AS TC
FROM Calls, CallingPlans
WHERE FkPlanId = PkPlanId AND Year >= 2000 AND Year <=2005
GROUP BY Year, PlanName
HAVING SUM(Charge) > 1000;

Give the initial logical query plan. Can the GROUP BY be pushed on the relation Calls?

Exercise 12.5 Consider the following schema without null values, where the keys
are underlined:

Customer(PkCustomer, CName, CCity)
Order(PkOrder, FkCustomer, ODate)
Product(PkProduct, PName, PCost)
OrderLine(LineNo, FkOrder, FkProduct, Quantity, ExtendedPrice, Discount, Revenue)

Consider the following query:
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SELECT CCity, AVG(Revenue) AS avgR
FROM OrderLine, Order, Customer
WHERE FkOrder = PkOrder AND FkCustomer = PkCustomer
GROUP BY CCity, FkCustomer
HAVING SUM(Revenue) > 1000;

Give the initial logical query plan and show how the GROUP BY can be pushed on the
join (OrderLine ./ Order).

Can the GROUP BY be pushed on the relation OrderLine?

Exercise 12.6 Consider the following schema with attributes of type integer with-
out null values, where the keys are underlined:

R(PkR, FkS, RC)
S(PkS, SE)

Show how the following query Q can be rewritten in SQL without the use of the
view V .

CREATE VIEW V AS
SELECT FkS, COUNT(∗) AS N
FROM R
GROUP BY FkS;

Q: SELECT SE, SUM(N) AS SN
FROM V, S
WHERE FkS = PkS;
GROUP BY SE;

Exercise 12.7 Consider the following schema, where the keys are underlined:

R(PkR integer, FkRS integer, RA varchar(10), RB integer)
S(PkS integer, SA varchar(20), SB varchar(10), SC varchar(10))
T(FkTS integer, TA integer, TB integer)

FkTS is both a primary key for T and a foreign key for S.

and the following query:

SELECT SA, TA
FROM R, S, T
WHERE FkRS = PkS AND PkS = FkTS

AND SC = ‘P’ AND RB > 130 AND RA = ‘B’;

Suppose the following indexes exist on the relations:

– R: four unclustered B+–tree indexes on PkR, FkRS, RA and RB.
– S: two unclustered B+–tree indexes on PkS and SC.
– T: one unclustered B+–tree index on FkTS.

The following information about the relations are available:

S R T

Nrec 300 10 000 300
Npag 66 110 18
Nkey(IdxPkS) 300
Nkey(IdxSC) 15
Nkey(IdxPkR) 10 000
Nkey(IdxFkRS) 300
Nkey(IdxRB) 50 (min = 70, max = 160)
Nkey(IdxRA) 200
Nkey(IdxFkTS) 300

Assume that the DBMS uses only the join physical operators NestedLoop and In-
dexNestedLoop, and only one index for selections.
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1. Give the query logical plan that the optimizer uses to find the physical plan.
2. Assuming that the optimizer uses a greedy search algorithm, give an estimate of

the cost and of the result size of the physical plan for each relation, approximating
and index access cost with only the CD.

3. Which join physical plan for two relations will be selected in the second query
optimization step?

4. What is the cost and the result size of the final best physical query plan?



Chapter 13

PHYSICAL DATABASE DESIGN
AND TUNING

After having seen the main solutions for the storage of databases, for the management
of transactions and for query optimization, useful for those who have to implement
systems for the management of data, in this chapter we show how this knowledge
is also important for those who develop applications that use databases, or manage
databases, and must ensure that applications run with the expected performances. To
accomplish this task it is necessary to know how applications use the data in order
to solve various types of problems that relate to (a) the physical design of the initial
database, to choose the most suitable storage structures and, if the performance is not
yet satisfactory, proceed with (b) tuning the database, to revise the solutions adopted
at the physical, logical and application levels, and (c) tuning the system.

13.1 Physical Database Design

The design of a relational database proceeds in four phases:

1. Requirements Analysis, for the specification of data to be taken into account and
the services to be implemented;

2. Conceptual Design, for the conceptual representation of the entities of interest
for the purposes of the operational activities, their properties, associations among
entities and the integrity constraints (business rules).

3. Logical Design, for the definition of the DB logical schema, typically a normal-
ized relational schema with controlled duplication, and appropriate integrity con-
straints to prevent improper data updates.

4. Physical Design, for the definition of appropriate storage structures for a specific
DBMS, to ensure the application performance desired, taking into account the
resources available.

The physical design is driven by the statistics on the database relations and the oper-
ations to be carried out on them. In particular, it is important to know the following
information.
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� Definition 13.1 Statistics

The statistics on the database relations are the following:

– For each relation, the number of records, the record size and the number
of pages used.

– For each attribute of records, the size, the number of distinct values and
the minimum and maximum value of each numeric attribute.

– The distribution of attribute values, if different from the uniform one.

� Definition 13.2 Workload Description

A workload description contains

– The critical queries and their frequency.
– The critical modification operations and their frequency.
– The expected performance for critical queries.

To create a good physical design, the designer must have knowledge about the DBMS,
especially data organizations, indexes and query processing techniques supported.
Since the physical design of a database is an activity that depends on the characteris-
tics of the specific DBMS, in the following we will provide a general overview of the
main aspects to be taken into consideration, without focusing on a specific system,
except to show some examples.

13.1.1 Workload Specification

The critical operations are those performed more frequently and for which a short
execution time is expected. In the definition of the workload of a database, for each
critical query it is necessary to specify

– the relations and attributes used;
– the attributes used in selection and join conditions;
– the selectivity factor of conditions.

Similarly, for each critical updates it is important to know

– the type (INSERT/DELETE/UPDATE);
– the attributes used in selection and join conditions;
– the selectivity factor of conditions.
– the attributes that are updated.

A simple way to specify this information is to use the ISUD (Insert, Select, Update,
Delete) tables. A table of this type specifies, for each application, the execution fre-
quency, the percentage of the data used and the type of operation that takes place on
the various attributes of a relation. Based on this table, it is easy to see which opera-
tions are performed more frequently and those that affect large amounts of data.

Figure 13.1 shows an example of a ISUD table.
It is important to keep in mind that the commercial DBMSs such as DB2, Ora-

cle and SQL Server, provide automated tools to analyze the workload of a database
during normal use of the system.
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Application Frequency Data Attributes

(%) Name Salary

Wage Montly 100 Select Select
New employee Daily 0.1 Insert Insert
Delete employee Montly 0.1 Delete Delete
Update salary Montly 10 Select Update

Figure 13.1: Example of a ISUD table for the relation Employee(Name, Salary)

13.1.2 Decisions to be Taken

The purpose of the physical design is to establish

– the organization of the relations;
– the indexes on the relations.

If these choices do not allow the attainment of the desired performance, it is necessary
to proceed as described later in the section on database tuning, in particular

– rewrite the critical queries to reduce their execution time;
– change the database logical schema, even giving up its normalization.

Storage structures for relations. Depending on the workload and the statistics
on the database relations, one of the following solutions is chosen for relations:

– Heap organization, when there is little data or when queries use large data subsets.
– Sequentiale organization, when data is static and it is interesting to have it sorted

by a key.
– Hash organization, when the most frequent operation on data is a record search

by a key.
– Index sequential organization, when it is interesting to keep the data sorted by a

key, even in the case of insertions, and the most frequent operation is a search for
records both by a key and by a key range.

Index Selection. The main goal of an index is to avoid a relation scan when
few records are looked for. The indexes on relations must be chosen so that they are
used by the optimizer to execute the critical queries, but keeping in mind that they
occupy memory and can slow the updates of the relations attributes on which they
are defined. Of course there are cases in which the indexes are entirely unnecessary,
as the following:

– Indexes on relations with few pages.
– Indexes on not very selective attributes.

In general, the problem of the selection of useful indexes does not have a trivial so-
lution due to the large number of possibilities to be taken into consideration. For this
reason, commercial systems provide tools to assist in the resolution of the problem,
such as DB2 Design Advisor, Oracle Access Advisor and SQL Server Tuning Advisor.
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In the absence of tools to choose indexes, one way to proceed is to consider, one at
a time, the critical queries and, for each of them, consider the plan chosen by the
optimizer, and then reconsider the choice of indexes.
Assuming that the system automatically builds indexes for primary keys and foreign
keys, in general, the attributes to be considered for indexing are not only those ap-
pearing in the clause WHERE. For example:

– An index, possibly clustered, for range searches that derive the greatest benefit
from a clustered index. In the case of range searches on different attributes it is
necessary to consider the conditions’ selectivity and the queries’ frequency in de-
ciding which index must be clustered.

– A multi-attribute (composite) index for conjunctive conditions: in this case the in-
dex can also be used for queries with conditions on prefixes of the index attributes.

– By analyzing the queries that would benefit from the use of an index, particular
attention must be paid to disjunctive conditions. For example, having only one
index on an attribute and an OR condition on two attributes, the index is not useful.

– Indexes are sorted on the key attributes, and so they are also useful on attributes
used in queries with ORDER BY or that can be executed with physical operators on
sorted data, such as GROUP BY, DISTINCT and set operators.

– Other indexes of interest are those defined on attributes that can be used to pro-
duce plans with physical operators IndexOnly, e.g. that use the index only, called
also covering index, to find the query result without having to access the data file.
Moreover the indexes are useful to execute joins with the operators IndexNested-
Loop or MergeJoin.

– An index I1 is unnecessary if it is subsumed by another I2, i.e. because the at-
tributes of I1 are included as prefix within those of I2. For example, an index on
A is subsumed by an index on (A,B), and both are subsumed by an index on
(A,B,C).

– Two indexes supporting two different queries can be merged into one index sup-
porting both queries with similar performance (index merging). For example, con-
sider the relation R(A,B,C, . . .) with attributes of type integer, and the queries:

SELECT DISTINCT A, B SELECT A, C, COUNT(∗)
FROM R FROM R
WHERE A = 80; GROUP BY A, C;

An useful index for the first query is on the attributes (A,B), and one for the
second query is on (A,C). The two indexes can be merged in one on (A,C,B).

13.1.3 Examples of Index Selection
Let us show some examples of index selection for queries on the following relational
schema:

Lecturers(PkLecturer INTEGER, Name VARCHAR(20), ResearchArea VARCHAR(10)
, Salary INTEGER, Position VARCHAR(10), FkDepartment INTEGER)

Departments(PkDepartment INTEGER, Name VARCHAR(20), City VARCHAR(10))

Table 13.1 shows the statistics on the relations, with indexes on the primary and
foreign keys and on some attributes.

In the cost analysis, only data access is considered and it is assumed that the
optimizer uses at most one index for each table.1

1. In the examples the cost estimates are those of the JRS system.
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Table 13.1: Physical parameters

Departments Lecturers

Nrec 300 10 000
Npag 30 1200
Nkey(IdxSal) 50 (min = 40, max = 160)
Nkey(IdxCity) 15

Use of Clustered Indexes. Equality and range searches by a non-key attribute,
are those that take greater advantage of the presence of clustered indexes, even with
not very selective simple conditions. Here are some examples.

Example 13.1
Let us consider the query

SELECT ∗

FROM Lecturers
WHERE Salary = 80;

With a selective simple condition the use of an index is always preferable, in
particular when clustered, to a table scan. In our case, the interesting plans are:2

Filter
(Salary=80)

TableScan
(Lecturers)

(a) No index

IndexFilter
(Lecturers, IdxSal, Salary=80)

(b) With unclustered index

ClusteredIndexFilter
(Lecturers, IdxSalCl, Salary=80)

(c) With clustered index

– The plan without indexes has the cost 1200.
– The plan with the unclustered index has the cost 185.
– The plan with the clustered index has the cost 24.

The usefulness of an index with respect to the table scan depends on the condi-
tion selectivity and, therefore, on the number of records that satisfy the condi-
tion. With the decrease of the condition selectivity, an unclustered index quickly
becomes less useful than scanning the table with the control of the condition on
data, while a clustered index becomes less useful only with a very low selectiv-
ity.

For example, if the condition selectivity is low (Salary > 80), the clustered
index on Salary is useful because the records with Salary > 80 are stored con-
tiguously in the pages. The interesting plans are:

Filter
(Salary> 80)

TableScan
(Lecturers)

(a) No index

IndexFilter
(Lecturers, IdxSal, Salary> 80)

(b) With unclustered index
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ClusteredIndexFilter
(Lecturers, IdxSalCl, Salary> 80)

(c) With clustered index

– The plan without indexes has the cost 1200.
– The plan with the unclustered index has the cost 6290.
– The plan with the clustered index has the cost 800.

A clustered index is also useful when data is to be sorted, as in the case of GROUP
BY , which is supposed to be performed with the sorting technique.

Example 13.2
Let us consider the query

SELECT ∗

FROM Lecturers
ORDER BY FkDepartment;

To obtain the sorted result, a clustered index on FkDepartment is useful, instead
of one on Salary. The interesting plans are:

SortScan
(Lecturers, {FkDepartment})

(a) No index

IndexScan
(Lecturers, IdxFKDep)

(b) With unclustered index

ClusteredIndexScan
(Lecturers, IdxFKDep)

(c) With clustered index

– The plan without indexes has the cost 3600.
– The plan with the unclustered index on FkDepartment has the cost 9250.
– The plan with the clustered index on FkDepartment has the cost 1200.

If the query also uses the simple condition on Salary, the best clustered index
depends on the condition selectivity. Let us consider a query with a low selective
condition.

SELECT ∗

WHERE Salary > 80
FROM Lecturers
ORDER BY FkDepartment;

The interesting plans are:
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Sort
({FkDepartment})

Filter
(Salary> 80)

TableScan
(Lecturers)

(a) No index

Filter
(Salary> 80)

IndexScan
(Lecturers, IdxFKDep)

(b) With unclustered index

Filter
(Salary> 80)

ClusteredIndexScan
(Lecturers, IdxFKDepCl)

(c) With clustered index

– The plan without indexes has the cost 3600.
– The plan with the unclustered index on FkDepartment has the cost 9250.
– The plan with the clustered index on FkDepartment has the cost 1200.

If the simple condition is selective (Salary > 150), then the best clustered index
becomes the one on Salary. The interesting plans are:

Sort
({FkDepartment})

Filter
(Salary> 150)

TableScan
(Lecturers)

(a) No index

Sort
({FkDepartment})

IndexFilter
(Lecturers, IdxSal, Salary> 150)

(b) With unclustered index

Sort
({FkDepartment})

ClusteredIndexFilter
(Lecturers, IdxSalCl, Salary> 150)

(c) With clustered index

– The plan without indexes has the cost 1500.
– The plan with the unclustered index on Salary has the cost 1225.
– The plan with the clustered index on Salary, instead of the one on FkDepart-

ment, has the cost 400.

From these considerations, one can imagine what the best type of index is if in
the previous query there was a GROUP BY such as

SELECT FkDepartment, SUM(Salary)
FROM Lecturers
GROUP BY FkDepartment;

with the different types of selection on Salary.
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In conclusion, clustered indexes are very useful, but it is not enough to build tradi-
tional indexes on sorted data. The existence of this type of indexes must be known to
the optimizer to estimate the cost of their use properly, as in DB2 and Sybase. At the
time of the creation of a clustered index on attributes X , the data in the table is first
sorted on X and then the index is created.

Finally, note that the term clustered index is used with different meanings in other
DBMSs. For example, in SQL Server, and MySQL InnoDB Storage Engine it means
a primary tree organization, with the data stored in the leaves of a B+–tree.

Multi-Attribute Indexes. In some cases, it is helpful to create indexes on multi-
ple attributes. For example, referring to the relations of previous examples, to find the
employees with (Position = ’R1’ AND Salary = 70) an index on the attributes (Position,
Salary) is preferable than an index on Position or on Salary. Multi-attribute indexes are
interesting also in the case of range queries with selective conditions. For example,
the performance of the following query

SELECT Name
FROM Lecturers
WHERE Position = ’R1’ AND Salary BETWEEN 50 AND 70

is improved with an index of (Position, Salary).
When a multi-attribute index is created, it is important to pay attention to the order

in which the index attributes are specified. An index on (Position, Salary) is also useful
for a condition on the attribute Position only, but it is useless for one on Salary.

Finally, there are some general considerations about the use of multi-attribute in-
dexes. Since each element of the index contains several attributes, there is a greater
chance that the optimizer generates plans using only the index. On the other hand,
a multi-attribute index is updated automatically after an update of any attribute on
which it is defined, and it occupies more memory than an index on a single attribute.

Index for Join. Let us see some examples of how a clustered index on a non-key
join attribute of the internal table is very useful in improving the performance of a
IndexNestedLoop

Example 13.3
Let us consider the query

SELECT L.Name, D.Name
FROM Lecturers L, Departments D
WHERE D.City = ’PI’ AND L.FkDepartment = D.PkDepartment;

Since all conditions involve an equality comparison, in agreement with what has
been said above, it is convenient to create two clustered indexes: one on City and
another on FkDepartment to support the join with the method IndexNestedLoop
and Departments as the outer table. The interesting plans are:
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Project
({L.Name,D.Name})

IndexNestedLoop
(D.PkDepartment= L.FkDepartment)

IndexFilter
(DepartmentsD, IdxCity, City= ′PI′)

IndexFilter
(Lecturers L, IdxFkDep, FkDepartment=D.PkDepartment)

(a) With unclustered index

Project
({L.Name,D.Name})

IndexNestedLoop
(D.PkDepartment= L.FkDepartment)

ClusteredIndexFilter
(DepartmentsD, IdxCityCl, City= ′PI′)

ClusteredIndexFilter
(Lecturers L, IdxFkDepCl, FkDepartment=D.PkDepartment)

(b) With clustered index

Figure 13.2: Examples of plans with City = ’PI’

– The plan with unclustered indexes has the cost 675.
– The plan with clustered indexes has the cost 82.

If in the WHERE clause there is also the selective simple condition (Salary = 55),
and there is an index on Salary, then the interesting plans become:

Project
({L.Name,D.Name})

IndexNestedLoop
(L.FkDepartment=D.PkDepartment)

IndexFilter
(Lecturers L, IdxSal, Salary= 55)

Filter
(City= ′PI′)

IndexFilter
(DepartmentsD, IdxPkDep, PkDepartment= L.FkDepartment)

(c) With unclustered index

Project
({L.Name,D.Name})

IndexNestedLoop
(L.FkDepartment=D.PkDepartment)

ClusteredIndexFilter
(Lecturers L, IdxSalCl, Salary= 55)

Filter
(City= ′PI′)

IndexFilter
(DepartmentsD, IdxPkDep, PkDepartment= L.FkDepartment)

(d) With clustered index on City and on Salary
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Index-Only Plans in DBMSs. Oracle and DB2 support this kind of plans.
SQL Server does not have this kind of physical operator. However the opti-
mizer is able to recognize that all the information needed to produce the query
result is available in the index that it is using, and so it generates a plan without
table accesses.

Project
({L.Name,D.Name})

IndexNestedLoop
(D.PkDepartment= L.FkDepartment)

ClusteredIndexFilter
(DepartmentsD, IdxCityCl, City= ′PI′)

Filter
(Salary= 55)

ClusteredIndexFilter
(Lecturers L, IdxFkDepCl, FkDepartment=D.PkDepartment)

(d) With clustered index on City and on FkDepartment

Figure 13.3: Examples of plans with City = ’PI’ and Salary = 55

– The plan with the unclustered indexes has the cost 385.
– The plan with the clustered indexes on City and on Salary has the cost 224.
– The plan with the clustered indexes on City and on FkDepartment has the cost

82.

Index-Only Plans. In some cases, it is possible to execute a query with index-only
plans, e.g. that use indexes without accesses to the data.3 In the case of queries on a
single table, the index must be defined on the attributes that appear in the SELECT
clause. Let us consider some examples.

SELECT DISTINCT FkDepartment
FROM Lecturers;

An index on FkDepartment makes it unnecessary to access the relation Lecturers to find
the different values of FkDepartment.

The index is also sufficient to perform the GROUP BY of the following query.

SELECT FkDepartment, COUNT(∗)
FROM Lecturers
GROUP BY FkDepartment;

Plans with an IndexOnlyFilter may also be used to perform joins:

SELECT D.Name
FROM Lecturers L, Departments D
WHERE L.FkDepartment = D.PkDepartment;

3. In the JRS system, this happens when the operator IndexOnlyFilter is used.
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An index on FkDepartment allows the generation of the following plan, which per-
forms the join with a IndexNestedLoop and internal operand an IndexOnlyFilter with
the index on FkDepartment of Lecturers, since all the information that is necessary to
perform the join is available in the index.

Project
({D.Name})

IndexNestedLoop
(D.PkDepartment= L.FkDepartment)

TableScan
(DepartmentsD)

IndexOnlyFilter
(Lecturers L, IdxFkDep, {FkDepartment}, FkDepartment=D.PkDepartment)

Suppose we change the query by placing D.Name, I.Name in the SELECT .
In this case, to avoid accesses to the table Lecturers again, a multi-attribute index

on (FkDepartment, Name) is necessary. Alternatively, SQL Server and DB2 allow the
definition of an index only on FkDepartment, but it is also possible to included the
attribute Name in the index, which cannot be used to make selections using the index,
because it is not in the set of the index key attributes.4

With a multi-attribute index on (FkDepartment, Salary), the following query is also
executed using an index-only physical operator.

SELECT FkDepartment, MIN(Salary)
FROM Lecturers
GROUP BY FkDepartment;

13.1.4 Concluding Remarks

The physical design of relational databases is a complex task and generally requires
knowledge of the workload, the characteristics of the DBMS in use and, above all,
the behavior of its optimizer. The choice of indexes is essential to speed up query
execution, but remember that

– indexes must be useful, because they take up memory and need to be updated;
– indexes should be used for different types of queries;
– it is convenient to define indexes to obtain physical query plans that use indexes

only;
– indexes are useful for physical operators on sorted data;
– the choice of clustered indexes is important, but only one of them can be defined

for a relation;
– the order of the attributes in multi-attribute indexes is important.

4. The DB2 system only allows the addition of attributes to an index that are not part of a key with the
command:

CREATE UNIQUE INDEX Name ON Table (KeyAttributes)
INCLUDE (OtherAttributes);

The clause UNIQUE is instead optional in SQL Server.
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13.2 Database Tuning

According to [Shasha and Bonnet, 2002] a definition of database tuning is

� Definition 13.3
Database tuning comprises all activities carried out to meet requirements
regarding the performance of database applications (i.e. queries or transac-
tions).

The goal of database tuning is to improve performance of database applications, but
performance may mean several things, and database tuning mostly refers to runtime
performance and related aspects, e.g. throughput (number of applications that can be
processes in a fixed time), response time (time to execute an application), resource
consumption (temporary or permanent memory).5

In general, tuning is about the following aspects:

– Applications, e.g. user queries and transactions.
– DBMS, e.g. configuration and parameters, database schema, storage structures.
– Operating System, e.g. system parameters and configuration for IO, network com-

munication.
– Hardware, e.g. used components for CPU, main memory, permanent memory.

Figure 13.4 shows the Database Tuning Quadrilemma presented by E. Schallehn.

Application
How is the DB used and

what are the tuning goals?

DBMS
What possibilities of

optimization does it provide?

Operating System
How does it manage HW
resources and services

used by the overall system?

Hardware
What are the suitable HW
components to support the
performance requirements?

Full Efficient Database Tuning
requires deep knowledge

about. . .

Figure 13.4: DBMS Tuning Quadrilemma

A database in use may have performance different from that expected. In this case,
starting from quantitative data on the database and other measures provided by the
tools monitoring the DBMS, it is necessary to intervene at different levels:

– Review the choice of indexes based on the physical query plans generated by the
optimizer.

5. See the interesting Schallehn’s slides on this topic, downloadable at this URL:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.173.8252&rep=rep1&type=pdf
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– Review the formulation of queries that do not exhibit the expected performance.
– Review the critical transactions.
– Review the schema logical structure and define appropriate views for the logical

data independence of application programs.

Database tuning is a process which begins with an analysis step to highlight the prob-
lems and decide which aspects are relevant. First, it is necessary to isolate the oper-
ations performed with slow response times, which can be either the critical ones or
those reported by dissatisfied users. The next step is to examine the execution of
queries with problems: the commercial DBMSs provide tools to analyze the perfor-
mance of queries and their physical plans. In particular, looking at the physical plans,
it is necessary to focus on

– the physical operators used for each relation;
– the order of intermediate results;
– the physical operators used in the plan to implement the logical operators.

Database tuning is a complex and continuous process, which restarts when applica-
tion requirements or the overall system change, and is performed by the following
professionals:

– Database and application designers, who have knowledge about applications and
the DBMS, but may have only fair to no knowledge about OS and HW.

– Database administrators, who have mainly good knowledge about DBMS, OS,
and HW.

– Database experts, who usually have strong knowledge about DBMS, OS and HW,
but little knowledge about applications.

Nowadays their work is simplified because commercial DBMSs provide automated
tools to support database tuning by “reducing the number of tuning knobs”, such as
Oracle Self-Tuning Architecture since Oracle 10g, IBM Autonomic Computing Initia-
tive, and Microsoft AutoAdmin project for MS SQL Server.

13.2.1 Index Tuning

Among others, index tuning is one of the main tuning task. The initial choice of
indexes can be revised for several reasons. The workload of the database used may
reveal that some queries and update operations, initially considered important, do not
really run very frequently, while there are other important ones which had not initially
been taken into account. In some cases, it may also happen that the query optimizer
does not generate the physical plan that was expected. For example, consider the
query:

SELECT L.Name, D.Name
FROM Lecturers L, Departments D
WHERE D.City = ’PI’ AND L.FkDepartment = D.PkDepartment

A good physical query plan should use a clustered index on City, with Departments
as the outer table, and perform the join with the method IndexNestedLoop, and an
IndexOnlyFilter as an internal operand that uses the clustered index on FkDepartment
of Lecturers, extended with the attribute Name. If the system in use does not allow the
creation of indexes with the clause INCLUDE, the physical plan in Figure 13.2 with
the cost 82 is obtained.
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Project
({L.Name,D.Name})

IndexNestedLoop
(D.PkDepartment= L.FkDepartment)

ClusteredIndexFilter
(DepartmentsD, IdxCityCl, City= ′PI′)

IndexOnlyFilter
(Lecturers L, IdxFkDepName, {Name}, FkDepartment=D.PkDepartment)

To overcome the DBMS’s limitation, the choice of the indexes is reviewed by defining
a clustered index on (FkDepartment, Name) for the relation Lecturers, and the following
physical plan will be obtained with the cost 22.

Remember, finally, that the optimizer is based on statistics available in the system
catalog, updated only on specific request with a command like UPDATE STATISTICS,
which should be run periodically if the database is changed frequently.

13.2.2 Query Tuning

If the DBMS’s optimizer does not transform SQL statements into forms that can be
optimized more easily, queries might be rewritten as follows to improve performance:

1. Semantically equivalent rewriting.

– Conjunctive conditions on the same attribute, if possible, are rewritten as con-
ditions with BETWEEN. In this case the optimizer may use any index available
to verify the condition, while with an AND, in some systems, the index is used
only for one of the simple condition, while the other is then checked on the
result.
For the same reason, disjunctive conditions on the same attribute are rewritten
with the operator IN.

– If a disjunctive conditions on different indexed attributes (p1 ∨ p2) are not
evaluated using both indexes, it must be considered whether the response time
improves by rewriting the query as a union of two that use p1 and p2 in the
WHERE clause.

– Subqueries are rewritten as joins.
– Avoid writing complex queries by introducing temporary views. If the opti-

mizer is not able to rewrite the query without the use of the views, in general
the physical plan produced has a higher cost.

– Avoid arithmetic expressions on indexed attributes used in conditions. For ex-
ample, rewrite Salary∗2 = 100 as Salary = 50, because in the first case an index
on Salary may not be used.

– Avoid useless HAVING or GROUP BY clauses; for example, the query
SELECT FkDepartment, MIN(Salary)
FROM Lecturers
GROUP BY FkDepartment
HAVING FkDepartment = 10;

is equivalent to the following one, for the equivalence rule on the selection
pushing.
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SELECT FkDepartment, MIN(Salary)
FROM Lecturers
WHERE FkDepartment = 10
GROUP BY FkDepartment;

If there was not FkDepartment in the SELECT , the GROUP BY also would be-
come useless.

2. Semantically non-equivalent rewriting.

– Avoid useless DISTINCT , in SELECT or subqueries, and ORDER BY .
– Avoid cartesian products.

13.2.3 Transaction Tuning

So far we have seen how to improve the performance of SQL queries, but another
common cause of inefficiency is the way in which transactions are programmed in the
applications. In particular, the transaction should be as short as possible to reduce the
length of the locks on the data used, and if it needs to collect information from the user
of the application, this should be done before the start of the transaction, thus avoiding
active locks during the interactions with the user. The possibility of subdividing long
transactions into a sequence of short transactions must be also considered.

The serializability of concurrent transactions is an important requirement of the
DBMS, but it reduces the number of concurrent transactions executable per unit of
time. There are cases, however, in which this property is not essential. For example,
in a flight reservation overbooking is tolerated, or a bank can make decisions on one
of its customer even if the balance is not the current one.

For these reasons, the DBMS allows us to declare that a transaction is isolated from
other concurrent transactions with a criterion weaker than serializability to prevent,
or limit, the use of the locks during the execution of a transaction. The SQL stan-
dard requires that, in the absence of other specifications, the execution of concurrent
transactions is serializable, but there are commercial systems that do not behave in
this way, but take one of the weaker criteria, which we will see later, in the absence of
other specifications. Therefore, it is necessary to know the default isolation level of
the DBMS in use before writing an application so as to avoid surprises [Adya et al.,
2000].

Atomicity and durability are instead essential requirements when a transaction
modifies data. These kinds of operations are, however, less frequent than the read
ones and for this reason the additional cost of the writing to the log file is accepted.

The SQL standard provides that write operations always take locks on data that are
released at the end of the transaction, but read locks are treated differently depending
on the isolation level specified at the beginning of the transaction:

– READ UNCOMMITTED. The reads of records are performed without the use of locks
on data and so dirty reads are possible since the transaction can read a write locked
data.6

Figure 13.5 shows the history of the concurrent execution of two transactions: T1
reads the database values of x and y, and then it modifies them, T2 reads and prints
the values of x and y, and it is executed with the isolation level READ UNCOMMIT-
TED. The values printed by T2 are not correct both in the case shown, and in the
case that T1 instead of the commit would have executed an abort.

6. To avoid improper writes on the database, some DBMSs require that transactions with the isolation
level READ UNCOMMITTED are not allowed to modify the database.
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T1 T2(RU)

r[x = 200]
w[x := 100]

r[x = 100]
r[y = 500]

c
r[y = 500]
w[y := 600]

c
dirty read of x

Figure 13.5: The problem of dirty reads

– READ COMMITTED. The transaction obtains short-term read locks on records, i.e.
released after reading, and exclusive locks before writing records and holds the
locks until the end. This isolation level prevents the dirty reads problem, but not
the problem of non-repeatable reads, because a read lock is released after reading
(in Figure 13.6, T1 reads x twice during its execution, and it finds different values)
or loses changes (Figure 13.7).

T1(RC) T2

r[x = 100]
w[x := 500]

c
r[x = 500]

c
read of x

non-repeatable

Figure 13.6: The problem of non-repeatable reads

T1(RC) T2(RC)

r[x = 100]
r[x = 100]
w[x := 500]

c
w[x := 600]

c
loss of the

change of x

Figure 13.7: The problem of loss of changes

– REPEATABLE READ. The read and write locks of records are released only at the
end of the transaction. This solution avoids the above problems, but introduces the
issue of phantom records: suppose that (a) transaction T1 executes a query Q to
retrieve records of R which satisfy a condition P , and (b) transaction T2 insert
other records into R which satisfy the condition P , before the termination of T1.
If T1 re-executes Q see also the records inserted by T2.
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– SERIALIZABLE. The read and write locks are of different sizes, and a read lock on
a table R is in conflict with an update of R. This isolation level, used as default,
does not suffer from the problems previously seen, but it reduces the number of
concurrent transactions executable per unit of time.

Note that commercial DBMSs may (a) not provide all the previous levels of isolation,
(b) not have the same default level of isolation and (c) have other isolation levels
(Table 13.2).7

Table 13.2: Isolation levels of some commercial DBMSs
(CS = CURSOR STABILITY, SN = SNAPSHOT)

DBMS READ READ REPEATABLE SERIALIZABLE OTHER
UNCOMMITTED COMMITTED READ

DB2
√ √

default CS
SQL Server

√
default

√
→ SN

Oracle default → SN
PostgreSQL → default → SN
MySQL

√ √ √
default

Some DBMS provide the SNAPSHOT, presented in Section 10.7, as isolation level
SERIALIZABLE.

In addition to the right isolation level, it is important to choose an appropriate locking
granularity: on tables for “long” transactions, on relation pages for “medium” trans-
actions, on records for “short” transactions. Finally, changes to the catalog should be
avoided when the database is in use, because when the catalog changes, the system
will block access to the database for the entire duration of the operation.

13.2.4 Logical Schema Tuning

If the physical design is not able to provide the desired performance, it is necessary
to consider a modification of the database logical schema to evaluate two types of re-
structuring: partitioning (vertical or horizontal) and denomalization. Then appropri-
ate view definitions are needed for ensuring the logic independence of applications.

In the analysis of restructuring a database logical schema we consider the following
example in BCNF about the exams of master degree programs:

Students(StudentNo, Name, City, BirthYear, BachelorDegree, University, Other)
Exams(PkExam, Lecturer, StudentNo, Course, Grade, Date, Other)
MasterProgram(PkMaster, Title, Coordinator, Department, Other)
MasterProgramExams(FkMaster, FkExam)

Vertical Partitioning

The goal is to reduce the volume of data transferred between permanent memory and
cache by splitting a relation in order to separate frequently accessed attributes from
those that are rarely referenced. A relation is partitioned with projections that include

7. When an isolation level is not marked this means that the DBMS does not allow the specification.
When an isolation level is marked with “→” means that it can be specified but is treated as the next
level.
In DB2 the level REPEATABLE READ is equivalent to SERIALIZABLE.
Oracle also provides the level READ ONLY.
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the primary key to guarantee that each partition has a subset of the original attributes
of all the original records.

Suppose that the following query is very frequently asked “find the number of ex-
ams passed and the number of students who have done the test by course, and by
academic year”, assuming that an exam is failed if the grade is “F”.

A vertical partitioning of Exams that speeds up the query execution is

ExamsForAnalysis(PkExam, Course, Grade, Date)
RestOfExams(PkExam, StudentNo, Other)

The partitioning preserves data, but loses the information that (Course, StudentNo) is
a key.

Horizontal Partitioning

The goal is the reduction of the cost of accessing a very large relation by splitting
it into partitions, to separate frequently accessed data from data rarely used. With
horizontal partitioning, each partition has a all the original attributes of a disjoint
subset of the original records.

Suppose that the following query is very frequently asked “for a study program
with title X and a course with less than 5 exams passed, find the number of exams,
by course, and academic year”.

A horizontal partitioning of Exams that speeds up the query execution is partition-
ing the table into different ones for each master programs, obtained from the join of
the relations Exams, MasterProgramExams, MasterProgram.

MasterProgramXExams(PkExam, Course, StudentNo, Grade, Date, Other)

Denormalization

Normalization is the process of decomposing a table into smaller tables to reduce
redundancy and avoid anomalies. Normalization can decrease performance. Denor-
malization is the process of adding columns to some tables to improve the query
performance of read-only queries. It reverses the normalization process and results in
a violation of normal form conditions.

Suppose that the following query is very frequently asked “for a student number
N , find the student name, the master program title and the grade of exams passed”.

To speed up the query the definition of the following table is useful, not in normal
form, by adding attributes to Exams.

ExamsStudentsMaster(PkExam, Course, StudentNo, StudentName, Grade, Date,
MasterTitle, Other)

13.3 DBMS Tuning

If all the strategies outlined so far do not lead to the expected applications perfor-
mance, the last thing to do is try to tune the database system. The aspects to consider
are numerous, but in general the most important ones are at three levels, which inter-
act with one another, and therefore they must be considered together.

1. Transaction Management. It is possible to intervene on parameters such as the
log storage, the frequency of checkpoints and dumps. In systems that allow the size
of the log to be set, the choice of this parameter can be complicated. In addition,
the more frequent the checkpoints and dumps are, the faster the database can be
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put online after a system failure or a disaster. The other side of the coin is that these
operations subtract resources to normal activities and, therefore, if performed too
frequently, can cause a significant degradation of system performance.

2. Database Buffer Size. The performance of the applications improves with a larger
buffer size. However, when setting this value, it is also necessary to consider the
amount of available memory, to avoid the buffer being placed on the disk, due to
lack of space, with noticeable performance degradation.

3. Disk Management. Options for tuning systems at this level including adding
disks or using RAID system if disk I/O is a bottleneck, adding more memory
if the disk buffer is a bottleneck, or moving to a faster processor if CPU use is a
bottleneck.

4. Parallel Architectures. This is is a complex issue that depends strictly on the
system in use. The use of a parallel architecture, among other things, has impact
on the way in which the data is stored and how the queries are optimized.

13.4 Summary

1. The physical design of a database requires the choice of storage structures for ta-
bles and indexes to ensure the performance expected by the workload of reference.
The problem is very complex and depends on the technical features of the DBMS
used, which, however, usually provide tools to assist the designer in this task.

2. In general, after a certain period of use of the database, the users report perfor-
mance problems for certain applications that require a revision of the physical
design, in particular the indexes used, taking into account the characteristics of
the DBMS optimizer.

3. In the database tuning phase it may be necessary to review both the way in which
queries were written, and the way in which the database logical schema was de-
signed.

Bibliographic Notes

A very useful book dedicated to databases tuning is [Shasha and Bonnet, 2002]. For
information on a specific DBMS, refer to the manual available online.

Exercises

Exercise 13.1 Consider the following relational schema, where the keys are under-
lined:

Suppliers(PkSupplier, Name, City)
Parts(PkPart, Name, PColor, Weight)
Orders(FkSupplier, FkPart, Date, Qty)

and the query:

SELECT DISTINCT S.Name, SUM(Qty)
FROM Orders O, Suppliers S
WHERE O.FkSupplier = S.PkSupplier AND O.FkPart < ‘P5’ AND S.City = ‘Pisa’
GROUP BY S.Name
ORDER BY S.Name;

1. Give the query logical tree.
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2. Find the best physical plan to evaluate the query without indexes and estimate its
cost.

3. Suggest the indexes that can be added to this database in order to improve the
query performance. Indicate whether these indices should be clustered or not. Ex-
plain your reasoning briefly.

4. Find the best physical plan to evaluate the query and estimate its cost.

Exercise 13.2 Consider the following relation:

Employee(EmployeeId, Name, Age, DeptId)

For each of the following queries, estimate the cost of a physical plan for two cases:
for the given query and for the query rewritten so that a better physical plan can be
found.

a) A B+–tree index on Age is available:

SELECT DeptId
FROM Employee
WHERE Age = 30 OR Age = 35 ;

b) A B+–tree index on Age is available:

SELECT DeptId
FROM Employee
WHERE Age < 35 AND Age > 30 ;

c) A B+–tree index on Age is available:

SELECT DeptId
FROM Employee
WHERE 2 ∗ Age = 100;

d) No index is available:

SELECT DeptId, AVG(Age)
FROM Employee
GROUP BY DeptId
HAVING DeptId = 20;

e) Consider also the following relation, where the key is underlined:

Departments(DeptId, DeptName, Location, Phone, ManagerId)

ManagerId can have a null value and it is a foreign key for Employees.

SELECT EmployeeId
FROM Employees, Departments
WHERE EmployeeId = ManagerId;

Exercise 13.3 Consider the schema, R(K, A), S(KE, B), with KE a foreign key for R,
and the query:

SELECT ∗
FROM R, S
WHERE K = KE;

Estimate the cost of two physical query plans with the operator MergeJoin, one with-
out the use of indexes, and another one using indexes on K and on KE. For each of the
following cases, explain why the indexes are useless:
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1. R and S have a record for page,
2. R and S have a few records for page.

Exercise 13.4 Consider the schema

Employees(EmpID, Name, Salary, Age, DeptID)
Departments(DeptID, Budget, University, Manager)

Assume that the following attribute values are uniformly distributed: Salary in the
range 10 to 100, Age in the range 20 to 70, Budget in the range 100 to 1000. Each
department has on average 30 employees and there are 30 universities.

Describe the indexes that you would choose to improve the query performance in
the following cases. Give the cost of the physical query plans. If the system does not
support index-only plans, how do you change the solution?

a) Find the name, age and Salary of all employees.

a1) No index.
a2) A clustered index on (Name, Age, Salary).
a3) An index on (Name, Age, Salary).
a4) An index on (Name, Age).

b) Find the DeptID of the departments of the University of Pisa with a budget less
than 50.

b1) No index.
b2) A clustered index on (University, Budget).
b3) An index on (University, Budget).
b4) A clustered index on (Budget).

c) Find the names of the employees who manage departments and have a salary
greater than 50.

c1) No index.
c2) An index on DeptID.
c3) An index on EmpID.
c4) A clustered index on Salary.
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Appendix A

FORMULARY

Selectivity Factor of Conditions

Condition (ψ) Selectivity Factor

Ai = c sf (ψ) =

{
1/Nkey(Ai) if Ai is indexed attribute
1/10 otherwise

Ai = Aj sf (ψ) =



1

max(Nkey(Ai), Nkey(Aj))
if both Ai and Aj are indexed

attributes and
dom(Ai) ⊆ dom(Aj) or
dom(Aj) ⊆ dom(Ai).

0 if dom(Ai) and dom(Aj)
are disjoint.

1/Nkey(Ai) if only Ai is an indexed attribute

1/10 otherwise

Ai > c sf (ψ) =


max(Ai)− c

max(Ai)−min(Ai)
if Ai is numerical and

an indexed attribute
1/3 otherwise

Ai < c sf (ψ) =


c−min(Ai)

max(Ai)−min(Ai)
if Ai is numerical and

an indexed attribute
1/3 otherwise

Ai < Aj sf (ψ) = 1/3

Ai BETWEEN
c1 AND c2

sf (ψ) =


c2 − c1

max(Ai)−min(Ai)
if Ai is numerical and

an indexed attribute
1/4 otherwise

Ai IN ( v1, . . . , vn ) sf (ψ) =

{
n× sf (Ai = v) if less than 1/2
1/2 otherwise

NOT ψ1 sf (ψ) = {1− sf (ψ1)

ψ1 AND ψ2 sf (ψ) = {sf (ψ1)× sf (ψ2)

ψ1 OR ψ2 sf (ψ) = {sf (ψ1) + sf (ψ2)− sf (ψ1)× sf (ψ2)
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JRS Physical Operators

Operators marked with an asterisk are not supported by the current JRS version.
Logical Operator Physical Operators Description

Table TableScan Full table scan of R.
(R)

IndexScan Sorted scan of R on the index
(R, I) I attributes.

R IndexSequentialScan∗ Sorted scan of R on the primary key with R
(R, I) organized index sequential.

SortScan Sorted scan of R on the attributes {Ai}.
(R, {Ai})

Projection Project Projection of O records
(O, {Ai}) without duplicate elimination.

πb IndexOnlyScan Projection of R records on attributes available
(R, I, {Ai}) in the index I without duplicate elimination,

and without any access to R.

Duplicate Distinct Duplicate elimination from
elmination (O) sorted O records.

δ HashDistinct∗ Duplicate elimination from O records.
(O)

Sort Sort Sort O records on {Ai}.
τ (O, {Ai})

Selection Filter Selection of the O records
(O,ψ) that satisfy the condition ψ.

IndexFilter Selection of the R records using the index
(R, I, ψ) I defined on the attributes in ψ.

IndexSequentialFilter∗ Selection of the R records that satisfy
(R, I, ψ) the condition on the primary key with R

organized index sequential.

σ IndexOnlyFilter Selection of the R records attributes available
(R, I, {Ai}, ψ) in the index I and used in ψ,

without any access to R.
The attributes {Ai} are a subset of those in I.

OrIndexFilter∗ Selection of the R records with indexes
(R, {Ii, ψi}) on predicates of a disjunctive condition.

AndIndexFilter∗ Selection of the R records with indexes
(R, {Ii, ψi}) on predicates of a conjunctive condition.
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Logical Operator Physical Operators Description

Grouping GroupBy Grouping of O records sorted on the attri-
(O, {Ai}, {fi}) butes {Ai} using the aggregate functions in

{fi}. The operator returns records with at-
tributes Ai and the aggregate functions in

γ {fi}, sorted on the attributes {Ai}.

HashGroupBy Grouping of O records using a hash fun-
(O, {Ai}, {fi}) ction on the attributes {Ai} and the result

is not sorted on the grouping attributes
{Ai}.

Join NestedLoop Nested-loop join.
(OE , OI , ψJ)

PageNestedLoop Page nested-loop join.
(OE , OI , ψJ)

./ IndexNestedLoop Index nested-loop join.
(OE , OI , ψJ) OI uses an index on the join attributes.

MergeJoin Merge join join.
(OE , OI , ψJ) The operand OE and OI records

are sorted on join attributes.
The external operand join attribute is a key.

HashJoin∗ Hash join.
(OE , OI , ψJ)

Set Operators Union, Except, Intersect Set operations with the operand records
∪,−,∩ (OE , OI) sorted and without duplicates.

UnionAll(OE , OI) Union without duplicates elimination.
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Estimates for Physical Operators Cost and Result Size

Physical Operators for Relation

Operator Cost Result Size

TableScan(R) Npag(R) Erec = Nrec(R)
IndexScan(R, I)

clustered index Nleaf(I) +Npag(R)
index on a key of R Nleaf(I) +Nrec(R)
otherwise Nleaf(I) +Nkey(I)×

Φ(dNrec(R)/Nkey(I)e , where
Npag(R)) Φ(k : int, n : int) : int =⌈

n(1− (1− 1/n)k)
⌉

IndexSequentialScan(R, I) Nleaf(I)
SortScan(R, {Ai}) 3×Npag(R)

The SortScan operator returns the records of a relation R sorted in ascending
order using a piped merge sort algorithm that returns the final result without
first writing it to a temporary file. For simplicity, we assume that it requires a
single merge phase.

Physical Operators for Projection

Operator Cost Result Size

Project(O, {Ai}) C(O) Erec = Erec(O)
IndexOnlyScan(R, I, {Ai}) Nleaf(I) Erec = Nrec(R)

Physical Operators for Duplicate Elimination

Operator Cost Result Size

Distinct(O) C(O) Erec = dErec(O)×
∏
sf (Ai)e

HashDistinct(O) C(O) + 2×Npag(O) where {Ai} is the set of attributes of O.
If Ai is an indexed attribute in R
sf (Ai) = Nkey(Ai)/Nrec(R)

otherwise
sf (Ai) = 1/10

Physical Operator for Sort

Operator Cost Result Size

Sort(O, {Ai}) C(O) + 2×Npag(O) Erec = Erec(O)

As with the SortScan, we assume that the operator Sort sorts the records of the
operand O with the piped merge sort algorithm and a single merge phase.
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Physical Operators for Selection

Operator Cost Result Size

Filter(O,ψ) C(O) Erec = dsf (ψ)× Erec(O)e
IndexFilter(R, I, ψ) CI + CD Erec = dsf (ψ)×Nrec(R)e

CI = dsf (ψ)×Nleaf(I)e
If the index is clustered
CD = dsf (ψ)×Npag(R)e
otherwise
CD = dsf (ψ)×Nkey(I)e×

Φ(dNrec(R)/Nkey(I)e , where
Npag(R)) Φ(k : int, n : int) : int =⌈

n(1− (1− 1/n)k)
⌉

IndexSequentialFilter(R, I, ψ) dsf (ψ)×Nleaf(I)e
IndexOnlyFilter(R, I, {Ai}, ψ) dsf (ψ)×Nleaf(I)e
OrIndexFilter(R, {Ii, ψi}) d

∑n
k=1 C

k
I e+

Φ(dsf (ψ)×Nrec(R)e,
Npag(R))

AndIndexFilter(R, {Ii, ψi})
⌈∑n

k=1 C
k
I

⌉
+

Φ(dsf (ψ)×Nrec(R)e ,
Npag(R))

Physical Operators for Grouping

Operator Cost Result Size

GroupBy(O, {Ai}, {fi}) C(O) Erec = dErec(O)×
∏
sf (Ai)e

HashGroupBy(O, {Ai}, {fi}) C(O) + 2×Npag(O) If Ai is an indexed attribute in R
sf (Ai) = Nkey(Ai)/Nrec(R)

otherwise
sf (Ai) = 1/10

Physical Operators for Join

Operator Cost Result Size

NestedLoop(OE , OI , ψJ) C(OE) + Erec(OE)× C(OI) Erec = dsf (ψJ)×
Erec(OE)×
Erec(OI)e

PageNestedLoop(OE , OI , ψJ) C(OE) +Npag(OE)× C(OI)
MergeJoin(OE , OI , ψJ) C(OE) + C(OI)
HashJoin(OE , OI , ψJ) C(OE) + C(OI) +

2× (Npag(OE) +Npag(OI))
IndexNestedLoop(OE , OI , ψJ) C(OE) + Erec(OE)× CI

A(OI) If OI is an
IndexFilter(S, I, ψJ)
Erec = dsf (ψJ)×

Erec(OE)×
Nrec(S)e

while if OI is a
Filter(
IndexFilter(S, I, ψJ), ψ)
Erec = dsf (ψJ)×

Erec(OE)×
(sf (ψ)×
Nrec(S))e
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Physical Operators for Set Operations

Operator Cost Result Size

Union(OE , OI) C(OE) + C(OI) Erec = max(Erec(OE), Erec(OI))+
min(Erec(OE), Erec(OI))/2

Except(OE , OI) C(OE) + C(OI) Erec = Erec(OE)− Erec(OI)/2
Intersect(OE , OI) C(OE) + C(OI) Erec = min(Erec(OE), Erec(OI))/2
UnionAll(OE , OI ) C(OE) + C(OI) Erec = Erec(OE) + Erec(OI)
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